利用近似贝叶斯计算马尔可夫链蒙特卡罗膨胀容限和后校正

M. Vihola, Jordan Franks
{"title":"利用近似贝叶斯计算马尔可夫链蒙特卡罗膨胀容限和后校正","authors":"M. Vihola, Jordan Franks","doi":"10.1093/biomet/asz078","DOIUrl":null,"url":null,"abstract":"Approximate Bayesian computation allows for inference of complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We consider an approach using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure its sufficient mixing, and post-processing the output leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators, and propose an adaptive approximate Bayesian computation Markov chain Monte Carlo, which finds a `balanced' tolerance level automatically, based on acceptance rate optimisation. Our experiments show that post-processing based estimators can perform better than direct Markov chain targetting a fine tolerance, that our confidence intervals are reliable, and that our adaptive algorithm leads to reliable inference with little user specification.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction\",\"authors\":\"M. Vihola, Jordan Franks\",\"doi\":\"10.1093/biomet/asz078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Bayesian computation allows for inference of complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We consider an approach using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure its sufficient mixing, and post-processing the output leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators, and propose an adaptive approximate Bayesian computation Markov chain Monte Carlo, which finds a `balanced' tolerance level automatically, based on acceptance rate optimisation. Our experiments show that post-processing based estimators can perform better than direct Markov chain targetting a fine tolerance, that our confidence intervals are reliable, and that our adaptive algorithm leads to reliable inference with little user specification.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asz078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asz078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近似贝叶斯计算允许使用模型模拟来推断具有难以处理的可能性的复杂概率模型。近似贝叶斯计算的马尔可夫链蒙特卡罗实现往往对容差参数敏感:容差小导致混合差,容差大导致偏差过大。我们考虑了一种使用相对较大公差的马尔可夫链蒙特卡罗采样器的方法,以确保其充分混合,并对输出进行后处理,从而得到一系列更细公差的估计器。我们为相关的后校正估计量引入了一个近似置信区间,并提出了一种自适应近似贝叶斯计算马尔可夫链蒙特卡罗算法,该算法基于接受率优化自动找到一个“平衡”的容忍水平。我们的实验表明,基于后处理的估计器可以比直接马尔可夫链表现得更好,我们的置信区间是可靠的,并且我们的自适应算法可以在很少的用户规范下产生可靠的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
Approximate Bayesian computation allows for inference of complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We consider an approach using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure its sufficient mixing, and post-processing the output leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators, and propose an adaptive approximate Bayesian computation Markov chain Monte Carlo, which finds a `balanced' tolerance level automatically, based on acceptance rate optimisation. Our experiments show that post-processing based estimators can perform better than direct Markov chain targetting a fine tolerance, that our confidence intervals are reliable, and that our adaptive algorithm leads to reliable inference with little user specification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信