多功能选择学习及其在视觉计算中的应用

Kai Tian, Yi Xu, Shuigeng Zhou, J. Guan
{"title":"多功能选择学习及其在视觉计算中的应用","authors":"Kai Tian, Yi Xu, Shuigeng Zhou, J. Guan","doi":"10.1109/CVPR.2019.00651","DOIUrl":null,"url":null,"abstract":"Most existing ensemble methods aim to train the underlying embedded models independently and simply aggregate their final outputs via averaging or weighted voting. As many prediction tasks contain uncertainty, most of these ensemble methods just reduce variance of the predictions without considering the collaborations among the ensembles. Different from these ensemble methods, multiple choice learning (MCL) methods exploit the cooperation among all the embedded models to generate multiple diverse hypotheses. In this paper, a new MCL method, called vMCL (the abbreviation of versatile Multiple Choice Learning), is developed to extend the application scenarios of MCL methods by ensembling deep neural networks. Our vMCL method keeps the advantage of existing MCL methods while overcoming their major drawback, thus achieves better performance. The novelty of our vMCL lies in three aspects: (1) a choice network is designed to learn the confidence level of each specialist which can provide the best prediction base on multiple hypotheses; (2) a hinge loss is introduced to alleviate the overconfidence issue in MCL settings; (3) Easy to be implemented and can be trained in an end-to-end manner, which is a very attractive feature for many real-world applications. Experiments on image classification and image segmentation task show that vMCL outperforms the existing state-of-the-art MCL methods.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"6342-6350"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Versatile Multiple Choice Learning and Its Application to Vision Computing\",\"authors\":\"Kai Tian, Yi Xu, Shuigeng Zhou, J. Guan\",\"doi\":\"10.1109/CVPR.2019.00651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing ensemble methods aim to train the underlying embedded models independently and simply aggregate their final outputs via averaging or weighted voting. As many prediction tasks contain uncertainty, most of these ensemble methods just reduce variance of the predictions without considering the collaborations among the ensembles. Different from these ensemble methods, multiple choice learning (MCL) methods exploit the cooperation among all the embedded models to generate multiple diverse hypotheses. In this paper, a new MCL method, called vMCL (the abbreviation of versatile Multiple Choice Learning), is developed to extend the application scenarios of MCL methods by ensembling deep neural networks. Our vMCL method keeps the advantage of existing MCL methods while overcoming their major drawback, thus achieves better performance. The novelty of our vMCL lies in three aspects: (1) a choice network is designed to learn the confidence level of each specialist which can provide the best prediction base on multiple hypotheses; (2) a hinge loss is introduced to alleviate the overconfidence issue in MCL settings; (3) Easy to be implemented and can be trained in an end-to-end manner, which is a very attractive feature for many real-world applications. Experiments on image classification and image segmentation task show that vMCL outperforms the existing state-of-the-art MCL methods.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"1 1\",\"pages\":\"6342-6350\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

大多数现有的集成方法旨在独立地训练底层嵌入模型,并通过平均或加权投票简单地汇总它们的最终输出。由于许多预测任务包含不确定性,这些集成方法大多只是减少预测的方差,而没有考虑集成之间的协作。与这些集成方法不同,选择学习方法利用所有嵌入模型之间的合作来生成多个不同的假设。本文提出了一种新的MCL方法,称为vMCL (versatile Multiple Choice Learning的缩写),通过集成深度神经网络来扩展MCL方法的应用场景。我们的vMCL方法既保留了现有MCL方法的优点,又克服了它们的主要缺点,从而获得了更好的性能。vMCL的新颖之处在于三个方面:(1)设计了一个选择网络来学习每个专家的置信度,从而在多个假设的基础上提供最佳的预测;(2)引入铰链损失以缓解MCL设置中的过度自信问题;(3)易于实现,可以以端到端方式进行训练,这对于许多实际应用来说是一个非常有吸引力的特性。对图像分类和图像分割任务的实验表明,vMCL优于现有的最先进的MCL方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Versatile Multiple Choice Learning and Its Application to Vision Computing
Most existing ensemble methods aim to train the underlying embedded models independently and simply aggregate their final outputs via averaging or weighted voting. As many prediction tasks contain uncertainty, most of these ensemble methods just reduce variance of the predictions without considering the collaborations among the ensembles. Different from these ensemble methods, multiple choice learning (MCL) methods exploit the cooperation among all the embedded models to generate multiple diverse hypotheses. In this paper, a new MCL method, called vMCL (the abbreviation of versatile Multiple Choice Learning), is developed to extend the application scenarios of MCL methods by ensembling deep neural networks. Our vMCL method keeps the advantage of existing MCL methods while overcoming their major drawback, thus achieves better performance. The novelty of our vMCL lies in three aspects: (1) a choice network is designed to learn the confidence level of each specialist which can provide the best prediction base on multiple hypotheses; (2) a hinge loss is introduced to alleviate the overconfidence issue in MCL settings; (3) Easy to be implemented and can be trained in an end-to-end manner, which is a very attractive feature for many real-world applications. Experiments on image classification and image segmentation task show that vMCL outperforms the existing state-of-the-art MCL methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信