基于稀疏表示的图像超分辨率重建

R. Nayak, D. Patra, S. Harshavardhan
{"title":"基于稀疏表示的图像超分辨率重建","authors":"R. Nayak, D. Patra, S. Harshavardhan","doi":"10.1109/TENCON.2015.7373149","DOIUrl":null,"url":null,"abstract":"The present paper addresses a single image super resolution reconstruction approach based on sparse representation of image patches. The proposed reconstruction process enforces a better sparsity solution which is guided by the sparse prior from the L1 norm optimization process. In the optimization process, an efficient feature extraction operator is used to ensure accurate prediction of the high resolution image patch. The normalized cross correlation is used as a similarity constraint to control the matching of image patch in the sparse framework. Finally, the reconstruction process is made robust to noise by selecting an optimal adaptive sparsity regularization parameter using particle swarm optimization method. In the present work, coupled dictionary training is used to learn the dictionaries. The efficiency of the proposed work is validated with different real and synthetic images. Various image quality metrics demonstrates the superiority of the proposed work over other existing super resolution reconstruction methods.","PeriodicalId":22200,"journal":{"name":"TENCON 2015 - 2015 IEEE Region 10 Conference","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sparse representation based image super resolution reconstruction\",\"authors\":\"R. Nayak, D. Patra, S. Harshavardhan\",\"doi\":\"10.1109/TENCON.2015.7373149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper addresses a single image super resolution reconstruction approach based on sparse representation of image patches. The proposed reconstruction process enforces a better sparsity solution which is guided by the sparse prior from the L1 norm optimization process. In the optimization process, an efficient feature extraction operator is used to ensure accurate prediction of the high resolution image patch. The normalized cross correlation is used as a similarity constraint to control the matching of image patch in the sparse framework. Finally, the reconstruction process is made robust to noise by selecting an optimal adaptive sparsity regularization parameter using particle swarm optimization method. In the present work, coupled dictionary training is used to learn the dictionaries. The efficiency of the proposed work is validated with different real and synthetic images. Various image quality metrics demonstrates the superiority of the proposed work over other existing super resolution reconstruction methods.\",\"PeriodicalId\":22200,\"journal\":{\"name\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"volume\":\"39 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2015.7373149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2015 - 2015 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2015.7373149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于图像块稀疏表示的单幅图像超分辨率重建方法。该重构过程在L1范数优化过程的稀疏先验指导下实现了更好的稀疏性解。在优化过程中,采用了高效的特征提取算子,保证了对高分辨率图像斑块的准确预测。在稀疏框架中,将归一化互相关作为相似度约束来控制图像patch的匹配。最后,采用粒子群优化方法选择最优自适应稀疏正则化参数,使重构过程对噪声具有鲁棒性。在本工作中,使用耦合字典训练来学习字典。用不同的真实图像和合成图像验证了该方法的有效性。各种图像质量指标证明了所提出的工作优于其他现有的超分辨率重建方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse representation based image super resolution reconstruction
The present paper addresses a single image super resolution reconstruction approach based on sparse representation of image patches. The proposed reconstruction process enforces a better sparsity solution which is guided by the sparse prior from the L1 norm optimization process. In the optimization process, an efficient feature extraction operator is used to ensure accurate prediction of the high resolution image patch. The normalized cross correlation is used as a similarity constraint to control the matching of image patch in the sparse framework. Finally, the reconstruction process is made robust to noise by selecting an optimal adaptive sparsity regularization parameter using particle swarm optimization method. In the present work, coupled dictionary training is used to learn the dictionaries. The efficiency of the proposed work is validated with different real and synthetic images. Various image quality metrics demonstrates the superiority of the proposed work over other existing super resolution reconstruction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信