{"title":"超越欧拉特征:逼近一般图的格","authors":"K. Kawarabayashi, Anastasios Sidiropoulos","doi":"10.1145/2746539.2746583","DOIUrl":null,"url":null,"abstract":"Computing the Euler genus of a graph is a fundamental problem in graph theory and topology. It has been shown to be NP-hard by Thomassen [27] and a linear-time fixed-parameter algorithm has been obtained by Mohar [20]. Despite extensive study, the approximability of the Euler genus remains wide open. While the existence of a constant factor approximation is not ruled out, the currently best-known upper bound is a trivial O(n/g)-approximation that follows from bounds on the Euler characteristic. In this paper, we give the first non-trivial approximation algorithm for this problem. Specifically, we present a polynomial-time algorithm which given a graph G of Euler genus g outputs an embedding of G into a surface of Euler genus gO(1). Combined with the above O(n/g)-approximation, our result also implies a O(n1-α)-approximation, for some universal constant α> 0. Our approximation algorithm also has implications for the design of algorithms on graphs of small genus. Several of these algorithms require that an embedding of the graph into a surface of small genus is given as part of the input. Our result implies that many of these algorithms can be implemented even when the embedding of the input graph is unknown.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Beyond the Euler Characteristic: Approximating the Genus of General Graphs\",\"authors\":\"K. Kawarabayashi, Anastasios Sidiropoulos\",\"doi\":\"10.1145/2746539.2746583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing the Euler genus of a graph is a fundamental problem in graph theory and topology. It has been shown to be NP-hard by Thomassen [27] and a linear-time fixed-parameter algorithm has been obtained by Mohar [20]. Despite extensive study, the approximability of the Euler genus remains wide open. While the existence of a constant factor approximation is not ruled out, the currently best-known upper bound is a trivial O(n/g)-approximation that follows from bounds on the Euler characteristic. In this paper, we give the first non-trivial approximation algorithm for this problem. Specifically, we present a polynomial-time algorithm which given a graph G of Euler genus g outputs an embedding of G into a surface of Euler genus gO(1). Combined with the above O(n/g)-approximation, our result also implies a O(n1-α)-approximation, for some universal constant α> 0. Our approximation algorithm also has implications for the design of algorithms on graphs of small genus. Several of these algorithms require that an embedding of the graph into a surface of small genus is given as part of the input. Our result implies that many of these algorithms can be implemented even when the embedding of the input graph is unknown.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beyond the Euler Characteristic: Approximating the Genus of General Graphs
Computing the Euler genus of a graph is a fundamental problem in graph theory and topology. It has been shown to be NP-hard by Thomassen [27] and a linear-time fixed-parameter algorithm has been obtained by Mohar [20]. Despite extensive study, the approximability of the Euler genus remains wide open. While the existence of a constant factor approximation is not ruled out, the currently best-known upper bound is a trivial O(n/g)-approximation that follows from bounds on the Euler characteristic. In this paper, we give the first non-trivial approximation algorithm for this problem. Specifically, we present a polynomial-time algorithm which given a graph G of Euler genus g outputs an embedding of G into a surface of Euler genus gO(1). Combined with the above O(n/g)-approximation, our result also implies a O(n1-α)-approximation, for some universal constant α> 0. Our approximation algorithm also has implications for the design of algorithms on graphs of small genus. Several of these algorithms require that an embedding of the graph into a surface of small genus is given as part of the input. Our result implies that many of these algorithms can be implemented even when the embedding of the input graph is unknown.