统计复杂度在自主组件集成安全性和性能分析中的应用

IF 0.6
A. Prangishvili, Irakly Rodonaia, Otar Shonia, Tengiz Bakhtadze
{"title":"统计复杂度在自主组件集成安全性和性能分析中的应用","authors":"A. Prangishvili, Irakly Rodonaia, Otar Shonia, Tengiz Bakhtadze","doi":"10.37394/232020.2022.2.8","DOIUrl":null,"url":null,"abstract":"The paper proposes a new technique for detecting malware threats in autonomic component ensembles. The technique is based on the statistic complexity metrics, which relate objects to random variables and (unlike other complexity measures considering objects as individual symbol strings) are ensemble based. This transforms the classic problem of assessing the complexity of an object into the realm of statistics. The proposed technique requires implementation of the process X (which generates ‘healthy’ flows containing no malware threats) and objects generated by the actual (possible infected) process Y. The component flows files are used as objects of the processes X and Y. The result of the proposed procedure gives us the distribution of probabilities of malware infection among autonomic components. The possibility to use the results obtained to perform quantitative probabilistic verification and analysis of ASEs using the probabilistic model checking tool PRISM is demonstrated.","PeriodicalId":93382,"journal":{"name":"The international journal of evidence & proof","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Statistic Complexity for Security and Performance Analysis in Autonomic Component Ensembles\",\"authors\":\"A. Prangishvili, Irakly Rodonaia, Otar Shonia, Tengiz Bakhtadze\",\"doi\":\"10.37394/232020.2022.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a new technique for detecting malware threats in autonomic component ensembles. The technique is based on the statistic complexity metrics, which relate objects to random variables and (unlike other complexity measures considering objects as individual symbol strings) are ensemble based. This transforms the classic problem of assessing the complexity of an object into the realm of statistics. The proposed technique requires implementation of the process X (which generates ‘healthy’ flows containing no malware threats) and objects generated by the actual (possible infected) process Y. The component flows files are used as objects of the processes X and Y. The result of the proposed procedure gives us the distribution of probabilities of malware infection among autonomic components. The possibility to use the results obtained to perform quantitative probabilistic verification and analysis of ASEs using the probabilistic model checking tool PRISM is demonstrated.\",\"PeriodicalId\":93382,\"journal\":{\"name\":\"The international journal of evidence & proof\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The international journal of evidence & proof\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232020.2022.2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of evidence & proof","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232020.2022.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种检测自主组件集成中恶意软件威胁的新技术。该技术基于统计复杂性度量,它将对象与随机变量联系起来,并且(与其他将对象视为单个符号字符串的复杂性度量不同)是基于集成的。这将评估对象复杂性的经典问题转变为统计学领域。所建议的技术需要实现进程X(生成不包含恶意软件威胁的“健康”流)和实际(可能受感染的)进程y生成的对象。组件流文件用作进程X和y的对象。所建议的过程的结果为我们提供了自主组件之间恶意软件感染概率的分布。使用概率模型检查工具PRISM,证明了使用所得结果进行定量概率验证和分析的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Statistic Complexity for Security and Performance Analysis in Autonomic Component Ensembles
The paper proposes a new technique for detecting malware threats in autonomic component ensembles. The technique is based on the statistic complexity metrics, which relate objects to random variables and (unlike other complexity measures considering objects as individual symbol strings) are ensemble based. This transforms the classic problem of assessing the complexity of an object into the realm of statistics. The proposed technique requires implementation of the process X (which generates ‘healthy’ flows containing no malware threats) and objects generated by the actual (possible infected) process Y. The component flows files are used as objects of the processes X and Y. The result of the proposed procedure gives us the distribution of probabilities of malware infection among autonomic components. The possibility to use the results obtained to perform quantitative probabilistic verification and analysis of ASEs using the probabilistic model checking tool PRISM is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信