3流形群表示的上同调不变量

Haimiao Chen
{"title":"3流形群表示的上同调不变量","authors":"Haimiao Chen","doi":"10.1142/s0218216520430038","DOIUrl":null,"url":null,"abstract":"Suppose $\\Gamma$ is a discrete group, and $\\alpha\\in Z^3(B\\Gamma;A)$, with $A$ an abelian group. Given a representation $\\rho:\\pi_1(M)\\to\\Gamma$, with $M$ a closed 3-manifold, put $F(M,\\rho)=\\langle(B\\rho)^\\ast[\\alpha],[M]\\rangle$, where $B\\rho:M\\to B\\Gamma$ is a continuous map inducing $\\rho$ which is unique up to homotopy, and $\\langle-,-\\rangle:H^3(M;A)\\times H_3(M;\\mathbb{Z})\\to A$ is the pairing. We present a practical method for computing $F(M,\\rho)$ when $M$ is given by a surgery along a link $L\\subset S^3$. In particular, the Chern-Simons invariant can be computed this way.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomological invariants of representations of 3-manifold groups\",\"authors\":\"Haimiao Chen\",\"doi\":\"10.1142/s0218216520430038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose $\\\\Gamma$ is a discrete group, and $\\\\alpha\\\\in Z^3(B\\\\Gamma;A)$, with $A$ an abelian group. Given a representation $\\\\rho:\\\\pi_1(M)\\\\to\\\\Gamma$, with $M$ a closed 3-manifold, put $F(M,\\\\rho)=\\\\langle(B\\\\rho)^\\\\ast[\\\\alpha],[M]\\\\rangle$, where $B\\\\rho:M\\\\to B\\\\Gamma$ is a continuous map inducing $\\\\rho$ which is unique up to homotopy, and $\\\\langle-,-\\\\rangle:H^3(M;A)\\\\times H_3(M;\\\\mathbb{Z})\\\\to A$ is the pairing. We present a practical method for computing $F(M,\\\\rho)$ when $M$ is given by a surgery along a link $L\\\\subset S^3$. In particular, the Chern-Simons invariant can be computed this way.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216520430038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218216520430038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设$\Gamma$是一个离散群,$\alpha\in Z^3(B\Gamma;A)$是一个阿贝尔群,$A$是一个阿贝尔群。给定一个表示$\rho:\pi_1(M)\to\Gamma$,其中$M$是一个封闭的3流形,放入$F(M,\rho)=\langle(B\rho)^\ast[\alpha],[M]\rangle$,其中$B\rho:M\to B\Gamma$是一个连续映射,诱导$\rho$,它直到同伦为止是唯一的,$\langle-,-\rangle:H^3(M;A)\times H_3(M;\mathbb{Z})\to A$是配对。我们提出了一种计算$F(M,\rho)$的实用方法,当$M$由沿链接$L\subset S^3$的一个手术给出时。特别地,chen - simons不变量可以这样计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomological invariants of representations of 3-manifold groups
Suppose $\Gamma$ is a discrete group, and $\alpha\in Z^3(B\Gamma;A)$, with $A$ an abelian group. Given a representation $\rho:\pi_1(M)\to\Gamma$, with $M$ a closed 3-manifold, put $F(M,\rho)=\langle(B\rho)^\ast[\alpha],[M]\rangle$, where $B\rho:M\to B\Gamma$ is a continuous map inducing $\rho$ which is unique up to homotopy, and $\langle-,-\rangle:H^3(M;A)\times H_3(M;\mathbb{Z})\to A$ is the pairing. We present a practical method for computing $F(M,\rho)$ when $M$ is given by a surgery along a link $L\subset S^3$. In particular, the Chern-Simons invariant can be computed this way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信