{"title":"MedCheX:一种高效的COVID-19临床检测模型","authors":"Chi-Shiang Wang, Fang-Yi Su, J. Chiang","doi":"10.6688/jise.202207_38","DOIUrl":null,"url":null,"abstract":"Due to the highly infectious and long incubation period of COVID-19, detecting COVID-19 efficiently and accurately is crucial since the epidemic outbreak. We proposed a new detection model based on U-Net++ and adopted dense blocks as the encoder. The model not only detects and classifies COVID-19 but also segment the lesion area precisely. We also designed a two-phase training strategy along with self-defined groups, especially the retrocardiac lesion to make model robust. We achieved 0.868 precision, 0.920 recall, and 0.893 F1-score on the COVID-19 open dataset. To contribute to this pandemic, we have set up a website with our model (https://medchex.tech/).","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MedCheX: An Efficient COVID-19 Detection Model for Clinical Usage\",\"authors\":\"Chi-Shiang Wang, Fang-Yi Su, J. Chiang\",\"doi\":\"10.6688/jise.202207_38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the highly infectious and long incubation period of COVID-19, detecting COVID-19 efficiently and accurately is crucial since the epidemic outbreak. We proposed a new detection model based on U-Net++ and adopted dense blocks as the encoder. The model not only detects and classifies COVID-19 but also segment the lesion area precisely. We also designed a two-phase training strategy along with self-defined groups, especially the retrocardiac lesion to make model robust. We achieved 0.868 precision, 0.920 recall, and 0.893 F1-score on the COVID-19 open dataset. To contribute to this pandemic, we have set up a website with our model (https://medchex.tech/).\",\"PeriodicalId\":50177,\"journal\":{\"name\":\"Journal of Information Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.6688/jise.202207_38\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/jise.202207_38","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MedCheX: An Efficient COVID-19 Detection Model for Clinical Usage
Due to the highly infectious and long incubation period of COVID-19, detecting COVID-19 efficiently and accurately is crucial since the epidemic outbreak. We proposed a new detection model based on U-Net++ and adopted dense blocks as the encoder. The model not only detects and classifies COVID-19 but also segment the lesion area precisely. We also designed a two-phase training strategy along with self-defined groups, especially the retrocardiac lesion to make model robust. We achieved 0.868 precision, 0.920 recall, and 0.893 F1-score on the COVID-19 open dataset. To contribute to this pandemic, we have set up a website with our model (https://medchex.tech/).
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.