人类动作捕捉数据的视觉交互半监督标记

J. Bernard, Eduard Dobermann, Anna Vögele, Björn Krüger, J. Kohlhammer, D. Fellner
{"title":"人类动作捕捉数据的视觉交互半监督标记","authors":"J. Bernard, Eduard Dobermann, Anna Vögele, Björn Krüger, J. Kohlhammer, D. Fellner","doi":"10.2352/ISSN.2470-1173.2017.1.VDA-387","DOIUrl":null,"url":null,"abstract":"The characterization and abstraction of large multivariate time series data often poses challenges with respect to effectiveness or efficiency. Using the example of human motion capture data challenges exist in creating compact solutions that still reflect semantics and kinematics in a meaningful way. We present a visual-interactive approach for the semi-supervised labeling of human motion capture data. Users are enabled to assign labels to the data which can subsequently be used to represent the multivariate time series as sequences of motion classes. The approach combines multiple views supporting the user in the visualinteractive labeling process. Visual guidance concepts further ease the labeling process by propagating the results of supportive algorithmic models. The abstraction of motion capture data to sequences of event intervals allows overview and detail-on-demand visualizations even for large and heterogeneous data collections. The guided selection of candidate data for the extension and improvement of the labeling closes the feedback loop of the semisupervised workflow. We demonstrate the effectiveness and the efficiency of the approach in two usage scenarios, taking visualinteractive learning and human motion synthesis as examples.","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"47 1","pages":"34-45"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Visual-Interactive Semi-Supervised Labeling of Human Motion Capture Data\",\"authors\":\"J. Bernard, Eduard Dobermann, Anna Vögele, Björn Krüger, J. Kohlhammer, D. Fellner\",\"doi\":\"10.2352/ISSN.2470-1173.2017.1.VDA-387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characterization and abstraction of large multivariate time series data often poses challenges with respect to effectiveness or efficiency. Using the example of human motion capture data challenges exist in creating compact solutions that still reflect semantics and kinematics in a meaningful way. We present a visual-interactive approach for the semi-supervised labeling of human motion capture data. Users are enabled to assign labels to the data which can subsequently be used to represent the multivariate time series as sequences of motion classes. The approach combines multiple views supporting the user in the visualinteractive labeling process. Visual guidance concepts further ease the labeling process by propagating the results of supportive algorithmic models. The abstraction of motion capture data to sequences of event intervals allows overview and detail-on-demand visualizations even for large and heterogeneous data collections. The guided selection of candidate data for the extension and improvement of the labeling closes the feedback loop of the semisupervised workflow. We demonstrate the effectiveness and the efficiency of the approach in two usage scenarios, taking visualinteractive learning and human motion synthesis as examples.\",\"PeriodicalId\":89305,\"journal\":{\"name\":\"Visualization and data analysis\",\"volume\":\"47 1\",\"pages\":\"34-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visualization and data analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

大型多变量时间序列数据的表征和抽象通常会对有效性或效率提出挑战。以人类运动捕捉数据为例,挑战在于创建紧凑的解决方案,这些解决方案仍然以有意义的方式反映语义和运动学。我们提出了一种视觉交互方法,用于人类动作捕捉数据的半监督标记。用户可以为数据分配标签,这些标签随后可用于将多变量时间序列表示为运动类序列。该方法结合了多个视图,在可视化交互标签过程中支持用户。视觉引导概念通过传播支持性算法模型的结果进一步简化了标注过程。将动作捕捉数据抽象为事件间隔序列,即使对于大型和异构数据集合,也可以实现概述和按需详细可视化。为扩展和改进标记而对候选数据的引导选择关闭了半监督工作流程的反馈回路。我们以视觉交互学习和人体运动合成为例,在两种使用场景中验证了该方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual-Interactive Semi-Supervised Labeling of Human Motion Capture Data
The characterization and abstraction of large multivariate time series data often poses challenges with respect to effectiveness or efficiency. Using the example of human motion capture data challenges exist in creating compact solutions that still reflect semantics and kinematics in a meaningful way. We present a visual-interactive approach for the semi-supervised labeling of human motion capture data. Users are enabled to assign labels to the data which can subsequently be used to represent the multivariate time series as sequences of motion classes. The approach combines multiple views supporting the user in the visualinteractive labeling process. Visual guidance concepts further ease the labeling process by propagating the results of supportive algorithmic models. The abstraction of motion capture data to sequences of event intervals allows overview and detail-on-demand visualizations even for large and heterogeneous data collections. The guided selection of candidate data for the extension and improvement of the labeling closes the feedback loop of the semisupervised workflow. We demonstrate the effectiveness and the efficiency of the approach in two usage scenarios, taking visualinteractive learning and human motion synthesis as examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信