具有局部突发对手的数据包转发

Will Rosenbaum
{"title":"具有局部突发对手的数据包转发","authors":"Will Rosenbaum","doi":"10.4230/LIPIcs.DISC.2022.4","DOIUrl":null,"url":null,"abstract":"We consider packet forwarding in the adversarial queueing theory (AQT) model introduced by Borodin et al. We introduce a refinement of the AQT $(\\rho, \\sigma)$-bounded adversary, which we call a \\emph{locally bursty adversary} (LBA) that parameterizes injection patterns jointly by edge utilization and packet origin. For constant ($O(1)$) parameters, the LBA model is strictly more permissive than the $(\\rho, \\sigma)$ model. For example, there are injection patterns in the LBA model with constant parameters that can only be realized as $(\\rho, \\sigma)$-bounded injection patterns with $\\rho + \\sigma = \\Omega(n)$ (where $n$ is the network size). We show that the LBA model (unlike the $(\\rho, \\sigma)$ model) is closed under packet bundling and discretization operations. Thus, the LBA model allows one to reduce the study of general (uniform) capacity networks and inhomogenous packet sizes to unit capacity networks with homogeneous packets. On the algorithmic side, we focus on information gathering networks -- i.e., networks in which all packets share a common destination, and the union of packet routes forms a tree. We show that the Odd-Even Downhill (OED) forwarding protocol described independently by Dobrev et al.\\ and Patt-Shamir and Rosenbaum achieves buffer space usage of $O(\\log n)$ against all LBAs with constant parameters. OED is a local protocol, but we show that the upper bound is tight even when compared to centralized protocols. Our lower bound for the LBA model is in contrast to the $(\\rho, \\sigma)$-model, where centralized protocols can achieve worst-case buffer space usage $O(1)$ for $\\rho, \\sigma = O(1)$, while the $O(\\log n)$ upper bound for OED is optimal only for local protocols.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"34 1","pages":"34:1-34:18"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Packet Forwarding with a Locally Bursty Adversary\",\"authors\":\"Will Rosenbaum\",\"doi\":\"10.4230/LIPIcs.DISC.2022.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider packet forwarding in the adversarial queueing theory (AQT) model introduced by Borodin et al. We introduce a refinement of the AQT $(\\\\rho, \\\\sigma)$-bounded adversary, which we call a \\\\emph{locally bursty adversary} (LBA) that parameterizes injection patterns jointly by edge utilization and packet origin. For constant ($O(1)$) parameters, the LBA model is strictly more permissive than the $(\\\\rho, \\\\sigma)$ model. For example, there are injection patterns in the LBA model with constant parameters that can only be realized as $(\\\\rho, \\\\sigma)$-bounded injection patterns with $\\\\rho + \\\\sigma = \\\\Omega(n)$ (where $n$ is the network size). We show that the LBA model (unlike the $(\\\\rho, \\\\sigma)$ model) is closed under packet bundling and discretization operations. Thus, the LBA model allows one to reduce the study of general (uniform) capacity networks and inhomogenous packet sizes to unit capacity networks with homogeneous packets. On the algorithmic side, we focus on information gathering networks -- i.e., networks in which all packets share a common destination, and the union of packet routes forms a tree. We show that the Odd-Even Downhill (OED) forwarding protocol described independently by Dobrev et al.\\\\ and Patt-Shamir and Rosenbaum achieves buffer space usage of $O(\\\\log n)$ against all LBAs with constant parameters. OED is a local protocol, but we show that the upper bound is tight even when compared to centralized protocols. Our lower bound for the LBA model is in contrast to the $(\\\\rho, \\\\sigma)$-model, where centralized protocols can achieve worst-case buffer space usage $O(1)$ for $\\\\rho, \\\\sigma = O(1)$, while the $O(\\\\log n)$ upper bound for OED is optimal only for local protocols.\",\"PeriodicalId\":89463,\"journal\":{\"name\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"volume\":\"34 1\",\"pages\":\"34:1-34:18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.DISC.2022.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2022.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们在Borodin等人提出的对抗排队理论(AQT)模型中考虑数据包转发。我们对AQT进行了改进 $(\rho, \sigma)$有界的对手,我们称之为a \emph{局部突发对手} (LBA),它通过边缘利用率和数据包来源共同参数化注入模式。对于常数($O(1)$)参数时,LBA模型严格地比 $(\rho, \sigma)$ 模型。例如,在LBA模型中有一些具有常量参数的注入模式,它们只能被实现为 $(\rho, \sigma)$-有界注入模式 $\rho + \sigma = \Omega(n)$ (哪里 $n$ 为网络大小)。我们证明了LBA模型(不像 $(\rho, \sigma)$ 模型)在分组捆绑和离散化操作下是封闭的。因此,LBA模型允许人们将一般(均匀)容量网络和非均匀数据包大小的研究减少到具有均匀数据包的单位容量网络。在算法方面,我们关注信息收集网络,即所有数据包共享一个共同目的地的网络,并且数据包路由的联合形成树。我们证明了Dobrev等和pat - shamir和Rosenbaum独立描述的奇偶下坡(odd -偶下坡)转发协议实现了缓冲区空间的使用 $O(\log n)$ 与所有具有恒定参数的lba进行比较。OED是一个本地协议,但我们表明,即使与集中式协议相比,它的上限也是严格的。我们LBA模型的下界与 $(\rho, \sigma)$-模型,其中集中式协议可以实现最坏情况下的缓冲区空间使用 $O(1)$ 为了 $\rho, \sigma = O(1)$,而 $O(\log n)$ OED的上界仅对本地协议是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Packet Forwarding with a Locally Bursty Adversary
We consider packet forwarding in the adversarial queueing theory (AQT) model introduced by Borodin et al. We introduce a refinement of the AQT $(\rho, \sigma)$-bounded adversary, which we call a \emph{locally bursty adversary} (LBA) that parameterizes injection patterns jointly by edge utilization and packet origin. For constant ($O(1)$) parameters, the LBA model is strictly more permissive than the $(\rho, \sigma)$ model. For example, there are injection patterns in the LBA model with constant parameters that can only be realized as $(\rho, \sigma)$-bounded injection patterns with $\rho + \sigma = \Omega(n)$ (where $n$ is the network size). We show that the LBA model (unlike the $(\rho, \sigma)$ model) is closed under packet bundling and discretization operations. Thus, the LBA model allows one to reduce the study of general (uniform) capacity networks and inhomogenous packet sizes to unit capacity networks with homogeneous packets. On the algorithmic side, we focus on information gathering networks -- i.e., networks in which all packets share a common destination, and the union of packet routes forms a tree. We show that the Odd-Even Downhill (OED) forwarding protocol described independently by Dobrev et al.\ and Patt-Shamir and Rosenbaum achieves buffer space usage of $O(\log n)$ against all LBAs with constant parameters. OED is a local protocol, but we show that the upper bound is tight even when compared to centralized protocols. Our lower bound for the LBA model is in contrast to the $(\rho, \sigma)$-model, where centralized protocols can achieve worst-case buffer space usage $O(1)$ for $\rho, \sigma = O(1)$, while the $O(\log n)$ upper bound for OED is optimal only for local protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信