反应堆剂量学和RPV寿命管理

S. Belousov, Krassimira Ilieva, M. Mitev
{"title":"反应堆剂量学和RPV寿命管理","authors":"S. Belousov, Krassimira Ilieva, M. Mitev","doi":"10.1520/JAI104140","DOIUrl":null,"url":null,"abstract":"Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reactor Dosimetry and RPV Life Management\",\"authors\":\"S. Belousov, Krassimira Ilieva, M. Mitev\",\"doi\":\"10.1520/JAI104140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI104140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

反应堆剂量学(RD)是一种提供反应堆运行期间在反应堆压力容器(RPV)上积累的中子通量数据的工具。然而,这些信息对于RPV寿命评估是不够的。RPV的生命管理是一个多学科的课题。为了评估在反应堆运行的当前阶段(实际累积中子通量),RPV钢的性能是否仍然“足够安全”,必须知道材料性能对中子通量的依赖;这是材料科学(MS)的任务。此外,如果提供RPV材料在这种加载条件下的完整性和现有裂缝,则必须知道RPV在正常运行和事故期间的机械载荷,以便进行评估。采用结构分析方法对裂缝加载路径进行了应力强度因子分析。这些分析中使用的RPV上的压力和温度分布是通过热工水力(TH)计算得到的。根据FFP(适应度)方法,分析了研发与其他学科在RPV完整性评估中的结合。它可以帮助提高多学科任务解决方案的效率。(作者)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactor Dosimetry and RPV Life Management
Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信