尼日利亚输电线路保护的人工神经网络技术

Uma Uzubi, A. Ekwue, E. Ejiogu
{"title":"尼日利亚输电线路保护的人工神经网络技术","authors":"Uma Uzubi, A. Ekwue, E. Ejiogu","doi":"10.1109/POWERAFRICA.2017.7991199","DOIUrl":null,"url":null,"abstract":"This paper presents a unique and efficient artificial neural network (ANN) based fault detection, classification and location on part of the Nigerian 132kV transmission line. The objective is to evaluate the performance of ANN based relays connected at both ends of the lines using feed-forward non-linear supervised back propagation algorithm with Levenberg-marguardt network topology. Using the PSCAD/EMTP software, the faults from both ends of the transmission lines are generated and fed into that same line using two different 132kV voltage sources with several variations of fault inception angle, location and resistance. The faults currents are then extracted, processed and divided into training and testing data using MATLAB software. The results obtained from the simulations are validated using real-data extracted from microprocessor based relay connected to Aba-Umuahia 132kVtransmission line. The results demonstrate the ability of ANN to correctly identify, classify and localize an actual fault occurring on that transmission line with high accuracy.","PeriodicalId":6601,"journal":{"name":"2017 IEEE PES PowerAfrica","volume":"18 1","pages":"52-58"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Artificial neural network technique for transmission line protection on Nigerian power system\",\"authors\":\"Uma Uzubi, A. Ekwue, E. Ejiogu\",\"doi\":\"10.1109/POWERAFRICA.2017.7991199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a unique and efficient artificial neural network (ANN) based fault detection, classification and location on part of the Nigerian 132kV transmission line. The objective is to evaluate the performance of ANN based relays connected at both ends of the lines using feed-forward non-linear supervised back propagation algorithm with Levenberg-marguardt network topology. Using the PSCAD/EMTP software, the faults from both ends of the transmission lines are generated and fed into that same line using two different 132kV voltage sources with several variations of fault inception angle, location and resistance. The faults currents are then extracted, processed and divided into training and testing data using MATLAB software. The results obtained from the simulations are validated using real-data extracted from microprocessor based relay connected to Aba-Umuahia 132kVtransmission line. The results demonstrate the ability of ANN to correctly identify, classify and localize an actual fault occurring on that transmission line with high accuracy.\",\"PeriodicalId\":6601,\"journal\":{\"name\":\"2017 IEEE PES PowerAfrica\",\"volume\":\"18 1\",\"pages\":\"52-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERAFRICA.2017.7991199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2017.7991199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

针对尼日利亚部分132kV输电线路,提出了一种独特、高效的基于人工神经网络的故障检测、分类和定位方法。目的是利用Levenberg-marguardt网络拓扑的前馈非线性监督反向传播算法来评估连接在线路两端的基于人工神经网络的中继的性能。使用PSCAD/EMTP软件,通过两个不同的132kV电压源产生并馈送到同一条线路中,这些电压源具有故障开始角度,位置和电阻的几个变化。然后利用MATLAB软件对故障电流进行提取、处理,划分为训练数据和测试数据。利用连接到Aba-Umuahia 132kv传输线的基于微处理器的继电器提取的真实数据验证了仿真结果。结果表明,人工神经网络能够以较高的准确率正确识别、分类和定位发生在该输电线路上的实际故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network technique for transmission line protection on Nigerian power system
This paper presents a unique and efficient artificial neural network (ANN) based fault detection, classification and location on part of the Nigerian 132kV transmission line. The objective is to evaluate the performance of ANN based relays connected at both ends of the lines using feed-forward non-linear supervised back propagation algorithm with Levenberg-marguardt network topology. Using the PSCAD/EMTP software, the faults from both ends of the transmission lines are generated and fed into that same line using two different 132kV voltage sources with several variations of fault inception angle, location and resistance. The faults currents are then extracted, processed and divided into training and testing data using MATLAB software. The results obtained from the simulations are validated using real-data extracted from microprocessor based relay connected to Aba-Umuahia 132kVtransmission line. The results demonstrate the ability of ANN to correctly identify, classify and localize an actual fault occurring on that transmission line with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信