基于差分进化算法的广义可能性c均值聚类

Fuheng Qu, Siliang Ma, Yating Hu
{"title":"基于差分进化算法的广义可能性c均值聚类","authors":"Fuheng Qu, Siliang Ma, Yating Hu","doi":"10.1109/IWISA.2009.5072884","DOIUrl":null,"url":null,"abstract":"In this paper, a new clustering model called generalized possibilistic c-means (GPCM) is proposed, and an efficient global optimization technique-differential evolution algorithm is used to optimize the proposed model. GPCM modifies possibilistic c-means (PCM) by limiting each cluster center in a fixed feasible region respectively. The feasible region is determined by the fuzzy c-means clustering algorithms, and then the optimal solution of GPCM model is searched by the differential evolution algorithm within the determined feasible region. GPCM inherits the noise robustness property of PCM, and it eliminates the coincident clusters problem of PCM by limiting different cluster centers in disjoint feasible regions. Experiments on the synthetic and real world data sets illustrate the effectiveness of GPCM.","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"33 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Possibilistic C-Means Clustering Based on Differential Evolution Algorithm\",\"authors\":\"Fuheng Qu, Siliang Ma, Yating Hu\",\"doi\":\"10.1109/IWISA.2009.5072884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new clustering model called generalized possibilistic c-means (GPCM) is proposed, and an efficient global optimization technique-differential evolution algorithm is used to optimize the proposed model. GPCM modifies possibilistic c-means (PCM) by limiting each cluster center in a fixed feasible region respectively. The feasible region is determined by the fuzzy c-means clustering algorithms, and then the optimal solution of GPCM model is searched by the differential evolution algorithm within the determined feasible region. GPCM inherits the noise robustness property of PCM, and it eliminates the coincident clusters problem of PCM by limiting different cluster centers in disjoint feasible regions. Experiments on the synthetic and real world data sets illustrate the effectiveness of GPCM.\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"33 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5072884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5072884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的聚类模型——广义可能性c均值(GPCM),并利用一种高效的全局优化技术——差分进化算法对该模型进行了优化。GPCM通过将每个聚类中心分别限制在一个固定的可行区域来修正可能性c均值(PCM)。采用模糊c均值聚类算法确定可行域,然后采用差分进化算法在确定的可行域内搜索GPCM模型的最优解。GPCM继承了PCM的噪声鲁棒性,并通过在不相交可行区域限制不同的聚类中心,消除了PCM的一致聚类问题。在合成数据集和实际数据集上的实验证明了GPCM的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Possibilistic C-Means Clustering Based on Differential Evolution Algorithm
In this paper, a new clustering model called generalized possibilistic c-means (GPCM) is proposed, and an efficient global optimization technique-differential evolution algorithm is used to optimize the proposed model. GPCM modifies possibilistic c-means (PCM) by limiting each cluster center in a fixed feasible region respectively. The feasible region is determined by the fuzzy c-means clustering algorithms, and then the optimal solution of GPCM model is searched by the differential evolution algorithm within the determined feasible region. GPCM inherits the noise robustness property of PCM, and it eliminates the coincident clusters problem of PCM by limiting different cluster centers in disjoint feasible regions. Experiments on the synthetic and real world data sets illustrate the effectiveness of GPCM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信