Haoyuan Cai, M. Kaloorazi, Jie Chen, Wei Chen, C. Richard
{"title":"基于随机化方法的在线优势广义特征向量提取","authors":"Haoyuan Cai, M. Kaloorazi, Jie Chen, Wei Chen, C. Richard","doi":"10.23919/Eusipco47968.2020.9287345","DOIUrl":null,"url":null,"abstract":"The generalized Hermitian eigendecomposition problem is ubiquitous in signal and machine learning applications. Considering the need of processing streaming data in practice and restrictions of existing methods, this paper is concerned with fast and efficient generalized eigenvectors tracking. We first present a computationally efficient algorithm based on randomization termed alternate-projections randomized eigenvalue decomposition (APR-EVD) to solve a standard eigenvalue problem. By exploiting rank-1 strategy, two online algorithms based on APR-EVD are developed for the dominant generalized eigenvectors extraction. Numerical examples show the practical applicability and efficacy of the proposed online algorithms.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"41 1","pages":"2353-2357"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Online Dominant Generalized Eigenvectors Extraction Via A Randomized Method\",\"authors\":\"Haoyuan Cai, M. Kaloorazi, Jie Chen, Wei Chen, C. Richard\",\"doi\":\"10.23919/Eusipco47968.2020.9287345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized Hermitian eigendecomposition problem is ubiquitous in signal and machine learning applications. Considering the need of processing streaming data in practice and restrictions of existing methods, this paper is concerned with fast and efficient generalized eigenvectors tracking. We first present a computationally efficient algorithm based on randomization termed alternate-projections randomized eigenvalue decomposition (APR-EVD) to solve a standard eigenvalue problem. By exploiting rank-1 strategy, two online algorithms based on APR-EVD are developed for the dominant generalized eigenvectors extraction. Numerical examples show the practical applicability and efficacy of the proposed online algorithms.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"41 1\",\"pages\":\"2353-2357\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Dominant Generalized Eigenvectors Extraction Via A Randomized Method
The generalized Hermitian eigendecomposition problem is ubiquitous in signal and machine learning applications. Considering the need of processing streaming data in practice and restrictions of existing methods, this paper is concerned with fast and efficient generalized eigenvectors tracking. We first present a computationally efficient algorithm based on randomization termed alternate-projections randomized eigenvalue decomposition (APR-EVD) to solve a standard eigenvalue problem. By exploiting rank-1 strategy, two online algorithms based on APR-EVD are developed for the dominant generalized eigenvectors extraction. Numerical examples show the practical applicability and efficacy of the proposed online algorithms.