{"title":"从基于个体的多细胞系统力学模型到自由边界问题","authors":"T. Lorenzi, P. Murray, M. Ptashnyk","doi":"10.4171/ifb/439","DOIUrl":null,"url":null,"abstract":"In this paper we present an individual-based mechanical model that describes the dynamics of two contiguous cell populations with different proliferative and mechanical characteristics. An off-lattice modelling approach is considered whereby: (i) every cell is identified by the position of its centre; (ii) mechanical interactions between cells are described via generic nonlinear force laws; and (iii) cell proliferation is contact inhibited. We formally show that the continuum counterpart of this discrete model is given by a free-boundary problem for the cell densities. The results of the derivation demonstrate how the parameters of continuum mechanical models of multicellular systems can be related to biophysical cell properties. We prove an existence result for the free-boundary problem and construct travelling-wave solutions. Numerical simulations are performed in the case where the cellular interaction forces are described by the celebrated Johnson-Kendall-Roberts model of elastic contact, which has been previously used to model cell-cell interactions. The results obtained indicate excellent agreement between the simulation results for the individual-based model, the numerical solutions of the corresponding free-boundary problem and the travelling-wave analysis.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"From individual-based mechanical models of multicellular systems to free-boundary problems\",\"authors\":\"T. Lorenzi, P. Murray, M. Ptashnyk\",\"doi\":\"10.4171/ifb/439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an individual-based mechanical model that describes the dynamics of two contiguous cell populations with different proliferative and mechanical characteristics. An off-lattice modelling approach is considered whereby: (i) every cell is identified by the position of its centre; (ii) mechanical interactions between cells are described via generic nonlinear force laws; and (iii) cell proliferation is contact inhibited. We formally show that the continuum counterpart of this discrete model is given by a free-boundary problem for the cell densities. The results of the derivation demonstrate how the parameters of continuum mechanical models of multicellular systems can be related to biophysical cell properties. We prove an existence result for the free-boundary problem and construct travelling-wave solutions. Numerical simulations are performed in the case where the cellular interaction forces are described by the celebrated Johnson-Kendall-Roberts model of elastic contact, which has been previously used to model cell-cell interactions. The results obtained indicate excellent agreement between the simulation results for the individual-based model, the numerical solutions of the corresponding free-boundary problem and the travelling-wave analysis.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/439\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/439","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
From individual-based mechanical models of multicellular systems to free-boundary problems
In this paper we present an individual-based mechanical model that describes the dynamics of two contiguous cell populations with different proliferative and mechanical characteristics. An off-lattice modelling approach is considered whereby: (i) every cell is identified by the position of its centre; (ii) mechanical interactions between cells are described via generic nonlinear force laws; and (iii) cell proliferation is contact inhibited. We formally show that the continuum counterpart of this discrete model is given by a free-boundary problem for the cell densities. The results of the derivation demonstrate how the parameters of continuum mechanical models of multicellular systems can be related to biophysical cell properties. We prove an existence result for the free-boundary problem and construct travelling-wave solutions. Numerical simulations are performed in the case where the cellular interaction forces are described by the celebrated Johnson-Kendall-Roberts model of elastic contact, which has been previously used to model cell-cell interactions. The results obtained indicate excellent agreement between the simulation results for the individual-based model, the numerical solutions of the corresponding free-boundary problem and the travelling-wave analysis.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.