{"title":"带有更新备忘录的r树","authors":"Xiaopeng Xiong, Walid G. Aref","doi":"10.1109/ICDE.2006.125","DOIUrl":null,"url":null,"abstract":"The problem of frequently updating multi-dimensional indexes arises in many location-dependent applications. While the R-tree and its variants are one of the dominant choices for indexing multi-dimensional objects, the R-tree exhibits inferior performance in the presence of frequent updates. In this paper, we present an R-tree variant, termed the RUM-tree (stands for R-tree with Update Memo) that minimizes the cost of object updates. The RUM-tree processes updates in a memo-based approach that avoids disk accesses for purging old entries during an update process. Therefore, the cost of an update operation in the RUM-tree reduces to the cost of only an insert operation. The removal of old object entries is carried out by a garbage cleaner inside the RUM-tree. In this paper, we present the details of the RUM-tree and study its properties. Theoretical analysis and experimental evaluation demonstrate that the RUMtree outperforms other R-tree variants by up to a factor of eight in scenarios with frequent updates.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"65 1","pages":"22-22"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"R-trees with Update Memos\",\"authors\":\"Xiaopeng Xiong, Walid G. Aref\",\"doi\":\"10.1109/ICDE.2006.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of frequently updating multi-dimensional indexes arises in many location-dependent applications. While the R-tree and its variants are one of the dominant choices for indexing multi-dimensional objects, the R-tree exhibits inferior performance in the presence of frequent updates. In this paper, we present an R-tree variant, termed the RUM-tree (stands for R-tree with Update Memo) that minimizes the cost of object updates. The RUM-tree processes updates in a memo-based approach that avoids disk accesses for purging old entries during an update process. Therefore, the cost of an update operation in the RUM-tree reduces to the cost of only an insert operation. The removal of old object entries is carried out by a garbage cleaner inside the RUM-tree. In this paper, we present the details of the RUM-tree and study its properties. Theoretical analysis and experimental evaluation demonstrate that the RUMtree outperforms other R-tree variants by up to a factor of eight in scenarios with frequent updates.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"65 1\",\"pages\":\"22-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The problem of frequently updating multi-dimensional indexes arises in many location-dependent applications. While the R-tree and its variants are one of the dominant choices for indexing multi-dimensional objects, the R-tree exhibits inferior performance in the presence of frequent updates. In this paper, we present an R-tree variant, termed the RUM-tree (stands for R-tree with Update Memo) that minimizes the cost of object updates. The RUM-tree processes updates in a memo-based approach that avoids disk accesses for purging old entries during an update process. Therefore, the cost of an update operation in the RUM-tree reduces to the cost of only an insert operation. The removal of old object entries is carried out by a garbage cleaner inside the RUM-tree. In this paper, we present the details of the RUM-tree and study its properties. Theoretical analysis and experimental evaluation demonstrate that the RUMtree outperforms other R-tree variants by up to a factor of eight in scenarios with frequent updates.