分数阶微分方程弱拓扑下新的存在性结果

Hallaci Ahmed, Professor DR., Krichen Bi̇lel, Mefteh Bi̇lel
{"title":"分数阶微分方程弱拓扑下新的存在性结果","authors":"Hallaci Ahmed, Professor DR., Krichen Bi̇lel, Mefteh Bi̇lel","doi":"10.31197/atnaa.1235476","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence of weak solutions for an initial value problem involving Riemann-Liouville-type fractional derivatives. To this end, we transform the posed problem to a sum of two integral operators, then we apply a variant of Krasnoselskii’s fixed point theorem under weak topology to conclude the existence of weak solutions.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New existence result under weak topology for fractional differential equations\",\"authors\":\"Hallaci Ahmed, Professor DR., Krichen Bi̇lel, Mefteh Bi̇lel\",\"doi\":\"10.31197/atnaa.1235476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the existence of weak solutions for an initial value problem involving Riemann-Liouville-type fractional derivatives. To this end, we transform the posed problem to a sum of two integral operators, then we apply a variant of Krasnoselskii’s fixed point theorem under weak topology to conclude the existence of weak solutions.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1235476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1235476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了一类含有riemann - liouville型分数阶导数的初值问题弱解的存在性。为此,我们将所提问题转化为两个积分算子的和,然后应用弱拓扑下Krasnoselskii不动点定理的一个变体,得出了弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New existence result under weak topology for fractional differential equations
This paper deals with the existence of weak solutions for an initial value problem involving Riemann-Liouville-type fractional derivatives. To this end, we transform the posed problem to a sum of two integral operators, then we apply a variant of Krasnoselskii’s fixed point theorem under weak topology to conclude the existence of weak solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信