Mohamed Elgamal, N. Korovkin, A. Refaat, A. Elmitwally
{"title":"混合能源微电网最优日前运行策略","authors":"Mohamed Elgamal, N. Korovkin, A. Refaat, A. Elmitwally","doi":"10.1109/EICONRUS.2019.8657280","DOIUrl":null,"url":null,"abstract":"This paper proposes a strategy for optimal day-ahead operation of a microgrid. The latter includes hybrid energy resources and an energy storage system (ESS). The forecasted day-ahead hourly average of metrological data and loads are fed into the energy management system (EMS). Accordingly, it decides the day-ahead hourly active and reactive power shares of each energy source. It also identifies the ESS charging/discharging periods and the tap setting of the main grid coupling transformer. The overall objective is to maximize the microgrid profit satisfying all constraints. The microgrid purchases/sells active and reactive powers from/to the main grid with time-varying energy price. The day-ahead operation of the microgrid is formulated as an optimization problem solved by a combined rule base - heuristic approach. The modified particle swarm optimization (PSO) technique is used as optimization solver. Moreover, the efficacy of the proposed EMS is verified by performance comparison to recent literature.","PeriodicalId":6748,"journal":{"name":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"1 1","pages":"489-494"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Optimal Day-Ahead Operation Strategy for Hybrid Energy Microgrid\",\"authors\":\"Mohamed Elgamal, N. Korovkin, A. Refaat, A. Elmitwally\",\"doi\":\"10.1109/EICONRUS.2019.8657280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a strategy for optimal day-ahead operation of a microgrid. The latter includes hybrid energy resources and an energy storage system (ESS). The forecasted day-ahead hourly average of metrological data and loads are fed into the energy management system (EMS). Accordingly, it decides the day-ahead hourly active and reactive power shares of each energy source. It also identifies the ESS charging/discharging periods and the tap setting of the main grid coupling transformer. The overall objective is to maximize the microgrid profit satisfying all constraints. The microgrid purchases/sells active and reactive powers from/to the main grid with time-varying energy price. The day-ahead operation of the microgrid is formulated as an optimization problem solved by a combined rule base - heuristic approach. The modified particle swarm optimization (PSO) technique is used as optimization solver. Moreover, the efficacy of the proposed EMS is verified by performance comparison to recent literature.\",\"PeriodicalId\":6748,\"journal\":{\"name\":\"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"volume\":\"1 1\",\"pages\":\"489-494\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUS.2019.8657280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2019.8657280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optimal Day-Ahead Operation Strategy for Hybrid Energy Microgrid
This paper proposes a strategy for optimal day-ahead operation of a microgrid. The latter includes hybrid energy resources and an energy storage system (ESS). The forecasted day-ahead hourly average of metrological data and loads are fed into the energy management system (EMS). Accordingly, it decides the day-ahead hourly active and reactive power shares of each energy source. It also identifies the ESS charging/discharging periods and the tap setting of the main grid coupling transformer. The overall objective is to maximize the microgrid profit satisfying all constraints. The microgrid purchases/sells active and reactive powers from/to the main grid with time-varying energy price. The day-ahead operation of the microgrid is formulated as an optimization problem solved by a combined rule base - heuristic approach. The modified particle swarm optimization (PSO) technique is used as optimization solver. Moreover, the efficacy of the proposed EMS is verified by performance comparison to recent literature.