物联网环境下基于雾计算的数据约简方法

Rawaa Majid Obaise, M. A. Salman, H. A. Lafta
{"title":"物联网环境下基于雾计算的数据约简方法","authors":"Rawaa Majid Obaise, M. A. Salman, H. A. Lafta","doi":"10.23919/EECSI50503.2020.9251894","DOIUrl":null,"url":null,"abstract":"This paper investigates a data processing model for a real experimental environment in which data is collected from several IoT devices on an edge server where a clustering-based data reduction model is implemented. Then, only representative data is transmitted to a cloud-hosted service to avoid high bandwidth consumption and the storage space at the cloud. In our model, the subtractive clustering algorithm is employed for the first time for streamed IoT data with high efficiency. Developed services show the real impact of data reduction technique at the fog node on enhancing overall system performance. High accuracy and reduction rate have been obtained through visualizing data before and after reduction.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"19 1","pages":"65-70"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data Reduction Approach Based on Fog Computing in IoT Environment\",\"authors\":\"Rawaa Majid Obaise, M. A. Salman, H. A. Lafta\",\"doi\":\"10.23919/EECSI50503.2020.9251894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a data processing model for a real experimental environment in which data is collected from several IoT devices on an edge server where a clustering-based data reduction model is implemented. Then, only representative data is transmitted to a cloud-hosted service to avoid high bandwidth consumption and the storage space at the cloud. In our model, the subtractive clustering algorithm is employed for the first time for streamed IoT data with high efficiency. Developed services show the real impact of data reduction technique at the fog node on enhancing overall system performance. High accuracy and reduction rate have been obtained through visualizing data before and after reduction.\",\"PeriodicalId\":6743,\"journal\":{\"name\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"volume\":\"19 1\",\"pages\":\"65-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EECSI50503.2020.9251894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一个真实实验环境的数据处理模型,其中数据从边缘服务器上的多个物联网设备收集,其中实现了基于集群的数据约简模型。然后,只有代表性的数据被传输到云托管服务,以避免高带宽消耗和云上的存储空间。在我们的模型中,首次对流物联网数据采用了高效的减法聚类算法。开发的服务显示了雾节点数据约简技术对提高系统整体性能的实际影响。通过还原前后数据的可视化,获得了较高的还原精度和还原率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Reduction Approach Based on Fog Computing in IoT Environment
This paper investigates a data processing model for a real experimental environment in which data is collected from several IoT devices on an edge server where a clustering-based data reduction model is implemented. Then, only representative data is transmitted to a cloud-hosted service to avoid high bandwidth consumption and the storage space at the cloud. In our model, the subtractive clustering algorithm is employed for the first time for streamed IoT data with high efficiency. Developed services show the real impact of data reduction technique at the fog node on enhancing overall system performance. High accuracy and reduction rate have been obtained through visualizing data before and after reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信