简单、高效、准确地分析了法兰平行板波导

IF 1.2 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
B. Honarbakhsh
{"title":"简单、高效、准确地分析了法兰平行板波导","authors":"B. Honarbakhsh","doi":"10.1080/09205071.2023.2239808","DOIUrl":null,"url":null,"abstract":"The flanged parallel-plate waveguide is analysed based on the method of Kobayashi potential (KP) using Fourier function space. The presentation of the method is free from intricate mathematics. Standard integral identities are used for problem formulation, without direct use of Weber-Schafheitlin (WS) integrals. The Fourier function space is exploited for the construction of the governing linear equations instead of Jacobi polynomials. A simple strategy is suggested for the evaluation of the required improper integrals. Near-field results are validated through convergence analysis. Far-field patterns are compared with predictions of the surface equivalence theorem (SET).","PeriodicalId":15650,"journal":{"name":"Journal of Electromagnetic Waves and Applications","volume":"24 1","pages":"1330 - 1340"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple, efficient, and accurate analysis of the flanged parallel-plate waveguide\",\"authors\":\"B. Honarbakhsh\",\"doi\":\"10.1080/09205071.2023.2239808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flanged parallel-plate waveguide is analysed based on the method of Kobayashi potential (KP) using Fourier function space. The presentation of the method is free from intricate mathematics. Standard integral identities are used for problem formulation, without direct use of Weber-Schafheitlin (WS) integrals. The Fourier function space is exploited for the construction of the governing linear equations instead of Jacobi polynomials. A simple strategy is suggested for the evaluation of the required improper integrals. Near-field results are validated through convergence analysis. Far-field patterns are compared with predictions of the surface equivalence theorem (SET).\",\"PeriodicalId\":15650,\"journal\":{\"name\":\"Journal of Electromagnetic Waves and Applications\",\"volume\":\"24 1\",\"pages\":\"1330 - 1340\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromagnetic Waves and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205071.2023.2239808\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromagnetic Waves and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205071.2023.2239808","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用傅里叶函数空间,基于小林势(KP)的方法对法兰平行板波导进行了分析。这种方法的表述不需要复杂的数学。标准积分恒等式用于问题的表述,没有直接使用韦伯-沙夫海特林(WS)积分。利用傅里叶函数空间来构造控制线性方程而不是雅可比多项式。提出了一种简单的策略来计算所需的反常积分。通过收敛分析验证了近场结果。将远场模式与表面等效定理(SET)的预测结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple, efficient, and accurate analysis of the flanged parallel-plate waveguide
The flanged parallel-plate waveguide is analysed based on the method of Kobayashi potential (KP) using Fourier function space. The presentation of the method is free from intricate mathematics. Standard integral identities are used for problem formulation, without direct use of Weber-Schafheitlin (WS) integrals. The Fourier function space is exploited for the construction of the governing linear equations instead of Jacobi polynomials. A simple strategy is suggested for the evaluation of the required improper integrals. Near-field results are validated through convergence analysis. Far-field patterns are compared with predictions of the surface equivalence theorem (SET).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electromagnetic Waves and Applications
Journal of Electromagnetic Waves and Applications 物理-工程:电子与电气
CiteScore
3.60
自引率
7.70%
发文量
116
审稿时长
3.3 months
期刊介绍: Journal of Electromagnetic Waves and Applications covers all aspects of electromagnetic wave theory and its applications. It publishes original papers and review articles on new theories, methodologies, and computational techniques, as well as interpretations of both theoretical and experimental results. The scope of this Journal remains broad and includes the following topics: wave propagation theory propagation in random media waves in composites and amorphous materials optical and millimeter wave techniques fiber/waveguide optics optical sensing sub-micron structures nano-optics and sub-wavelength effects photonics and plasmonics atmospherics and ionospheric effects on wave propagation geophysical subsurface probing remote sensing inverse scattering antenna theory and applications fields and network theory transients radar measurements and applications active experiments using space vehicles electromagnetic compatibility and interferometry medical applications and biological effects ferrite devices high power devices and systems numerical methods The aim of this Journal is to report recent advancements and modern developments in the electromagnetic science and new exciting applications covering the aforementioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信