{"title":"变厚圆板弯曲问题中的正则多项式","authors":"O. Bugrim, Ye.S. Sinaiskii","doi":"10.15421/247725","DOIUrl":null,"url":null,"abstract":"The problem about the bend of circular plate of variable thickness under specifically selected laws of rigidity change is reduced to the ordinary differential equation with variable coefficients of polynomial kind. The construction of the approximate solution of equation that satisfies boundary conditions is realized by means of canonical polynomials and $\\tau$-method of Lantzosh.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical polynomials in the problem about the bend of circular plate of variable thickness\",\"authors\":\"O. Bugrim, Ye.S. Sinaiskii\",\"doi\":\"10.15421/247725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem about the bend of circular plate of variable thickness under specifically selected laws of rigidity change is reduced to the ordinary differential equation with variable coefficients of polynomial kind. The construction of the approximate solution of equation that satisfies boundary conditions is realized by means of canonical polynomials and $\\\\tau$-method of Lantzosh.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/247725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Canonical polynomials in the problem about the bend of circular plate of variable thickness
The problem about the bend of circular plate of variable thickness under specifically selected laws of rigidity change is reduced to the ordinary differential equation with variable coefficients of polynomial kind. The construction of the approximate solution of equation that satisfies boundary conditions is realized by means of canonical polynomials and $\tau$-method of Lantzosh.