基于异构核心结构的1.32 TOPS/W高能效深度神经网络学习处理器

Donghyeon Han, Jinsu Lee, Jinmook Lee, H. Yoo
{"title":"基于异构核心结构的1.32 TOPS/W高能效深度神经网络学习处理器","authors":"Donghyeon Han, Jinsu Lee, Jinmook Lee, H. Yoo","doi":"10.23919/VLSIC.2019.8778006","DOIUrl":null,"url":null,"abstract":"An energy efficient deep neural network (DNN) learning processor is proposed using direct feedback alignment (DFA). The proposed processor achieves $2.2 \\times$ faster learning speed compared with the previous learning processors by the pipelined DFA (PDFA). In order to enhance the energy efficiency by 38.7%, the heterogeneous learning core (LC) architecture is optimized with the 11-stage pipeline data-path. Furthermore, direct error propagation core (DEPC) utilizes random number generators (RNG) to remove external memory access (EMA) caused by error propagation (EP) and improve the energy efficiency by 19.9%. The proposed PDFA based learning processor is evaluated on the object tracking (OT) application, and as a result, it shows 34.4 frames-per-second (FPS) throughput with 1.32 TOPS/W energy efficiency.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"19 1","pages":"C304-C305"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A 1.32 TOPS/W Energy Efficient Deep Neural Network Learning Processor with Direct Feedback Alignment based Heterogeneous Core Architecture\",\"authors\":\"Donghyeon Han, Jinsu Lee, Jinmook Lee, H. Yoo\",\"doi\":\"10.23919/VLSIC.2019.8778006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy efficient deep neural network (DNN) learning processor is proposed using direct feedback alignment (DFA). The proposed processor achieves $2.2 \\\\times$ faster learning speed compared with the previous learning processors by the pipelined DFA (PDFA). In order to enhance the energy efficiency by 38.7%, the heterogeneous learning core (LC) architecture is optimized with the 11-stage pipeline data-path. Furthermore, direct error propagation core (DEPC) utilizes random number generators (RNG) to remove external memory access (EMA) caused by error propagation (EP) and improve the energy efficiency by 19.9%. The proposed PDFA based learning processor is evaluated on the object tracking (OT) application, and as a result, it shows 34.4 frames-per-second (FPS) throughput with 1.32 TOPS/W energy efficiency.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"19 1\",\"pages\":\"C304-C305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8778006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

提出了一种基于直接反馈对齐(DFA)的高能效深度神经网络(DNN)学习处理器。采用流水线DFA (PDFA)学习处理器的学习速度比以往的学习处理器快2.2倍。此外,直接错误传播核心(DEPC)利用随机数生成器(RNG)消除了由错误传播(EP)引起的外部内存访问(EMA),提高了19.9%的能源效率。在目标跟踪(OT)应用中对所提出的基于PDFA的学习处理器进行了评估,结果表明,该处理器具有34.4帧/秒(FPS)的吞吐量和1.32 TOPS/W的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1.32 TOPS/W Energy Efficient Deep Neural Network Learning Processor with Direct Feedback Alignment based Heterogeneous Core Architecture
An energy efficient deep neural network (DNN) learning processor is proposed using direct feedback alignment (DFA). The proposed processor achieves $2.2 \times$ faster learning speed compared with the previous learning processors by the pipelined DFA (PDFA). In order to enhance the energy efficiency by 38.7%, the heterogeneous learning core (LC) architecture is optimized with the 11-stage pipeline data-path. Furthermore, direct error propagation core (DEPC) utilizes random number generators (RNG) to remove external memory access (EMA) caused by error propagation (EP) and improve the energy efficiency by 19.9%. The proposed PDFA based learning processor is evaluated on the object tracking (OT) application, and as a result, it shows 34.4 frames-per-second (FPS) throughput with 1.32 TOPS/W energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信