p-Dirichlet问题的Crouzeix-Raviart近似的误差分析

IF 3.8 2区 数学 Q1 MATHEMATICS
A. Kaltenbach
{"title":"p-Dirichlet问题的Crouzeix-Raviart近似的误差分析","authors":"A. Kaltenbach","doi":"10.48550/arXiv.2210.12116","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we examine a Crouzeix–Raviart approximation for non-linear partial differential equations having a (p, δ)-structure for some p ∈ (1, ∞) and δ⩾0. We establish a priori error estimates, which are optimal for all p ∈ (1, ∞) and δ⩾0, medius error estimates, i.e., best-approximation results, and a primal-dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Error analysis for a Crouzeix–Raviart approximation of the p-Dirichlet problem\",\"authors\":\"A. Kaltenbach\",\"doi\":\"10.48550/arXiv.2210.12116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, we examine a Crouzeix–Raviart approximation for non-linear partial differential equations having a (p, δ)-structure for some p ∈ (1, ∞) and δ⩾0. We establish a priori error estimates, which are optimal for all p ∈ (1, ∞) and δ⩾0, medius error estimates, i.e., best-approximation results, and a primal-dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.12116\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.12116","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们研究了对于某些p∈(1,∞)和δ大于或等于0具有(p, δ)结构的非线性偏微分方程的Crouzeix-Raviart近似。我们建立了先验误差估计,这对于所有p∈(1,∞)和δ小于或等于0是最优的,中等误差估计,即最佳近似结果,以及原始-对偶后验误差估计,这既可靠又有效。理论结果得到数值实验的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis for a Crouzeix–Raviart approximation of the p-Dirichlet problem
Abstract In the present paper, we examine a Crouzeix–Raviart approximation for non-linear partial differential equations having a (p, δ)-structure for some p ∈ (1, ∞) and δ⩾0. We establish a priori error estimates, which are optimal for all p ∈ (1, ∞) and δ⩾0, medius error estimates, i.e., best-approximation results, and a primal-dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信