{"title":"图的跳跃偏心连通性指标的若干性质","authors":"Ling Song, Li Hechao, Tang Zi-kai","doi":"10.22052/IJMC.2020.233343.1505","DOIUrl":null,"url":null,"abstract":"The leap eccentric connectivity index of $G$ is defined as $$Lxi^{C}(G)=sum_{vin V(G)}d_{2}(v|G)e(v|G)$$ where $d_{2}(v|G) $ be the second degree of the vertex $v$ and $e(v|G)$ be the eccentricity of the vertex $v$ in $G$. In this paper, we give some properties of the leap eccentric connectivity index of the graph $G$.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some Properties of the Leap Eccentric Connectivity Index of Graphs\",\"authors\":\"Ling Song, Li Hechao, Tang Zi-kai\",\"doi\":\"10.22052/IJMC.2020.233343.1505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leap eccentric connectivity index of $G$ is defined as $$Lxi^{C}(G)=sum_{vin V(G)}d_{2}(v|G)e(v|G)$$ where $d_{2}(v|G) $ be the second degree of the vertex $v$ and $e(v|G)$ be the eccentricity of the vertex $v$ in $G$. In this paper, we give some properties of the leap eccentric connectivity index of the graph $G$.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2020.233343.1505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2020.233343.1505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Some Properties of the Leap Eccentric Connectivity Index of Graphs
The leap eccentric connectivity index of $G$ is defined as $$Lxi^{C}(G)=sum_{vin V(G)}d_{2}(v|G)e(v|G)$$ where $d_{2}(v|G) $ be the second degree of the vertex $v$ and $e(v|G)$ be the eccentricity of the vertex $v$ in $G$. In this paper, we give some properties of the leap eccentric connectivity index of the graph $G$.