E. Zhang, Jin Huang, Yue Gao, Yau Liu, Yangdong Deng
{"title":"基于层次感知的自动驾驶决策框架","authors":"E. Zhang, Jin Huang, Yue Gao, Yau Liu, Yangdong Deng","doi":"10.1080/23335777.2021.1901147","DOIUrl":null,"url":null,"abstract":"ABSTRACT Self-driving vehicles have attracted significant attention from both industry and academy. Despite the intensive research efforts on the perception model of environment-awareness, it is still challenging to attain accurate decision-making under real-world driving scenarios. Today’s state-of-the-art solutions typically hinge on end-to-end DNN-based perception-control models, which provide a rather direct way of driving decision-making. However, DNN models may fail in dealing with complex driving scenarios that require relational reasoning. This paper proposes a hierarchical perception decision-making framework for autonomous driving by employing hypergraph-based reasoning, which enables fuse multi-perceptual models to integrate multimodal environmental information. The proposed framework utilises the high-order correlations behind driving behaviours, and thus allows better relational reasoning and generalisation to achieve more precise driving decisions. Our work outperforms state-of-the-art results on Udacity, Berkeley DeepDrive Video and DBNet data sets. The proposed techniques can be used to construct a unified driving decision-making framework for modular integration of autonomous driving systems.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"14 1","pages":"192 - 209"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hierarchical perception decision-making framework for autonomous driving\",\"authors\":\"E. Zhang, Jin Huang, Yue Gao, Yau Liu, Yangdong Deng\",\"doi\":\"10.1080/23335777.2021.1901147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Self-driving vehicles have attracted significant attention from both industry and academy. Despite the intensive research efforts on the perception model of environment-awareness, it is still challenging to attain accurate decision-making under real-world driving scenarios. Today’s state-of-the-art solutions typically hinge on end-to-end DNN-based perception-control models, which provide a rather direct way of driving decision-making. However, DNN models may fail in dealing with complex driving scenarios that require relational reasoning. This paper proposes a hierarchical perception decision-making framework for autonomous driving by employing hypergraph-based reasoning, which enables fuse multi-perceptual models to integrate multimodal environmental information. The proposed framework utilises the high-order correlations behind driving behaviours, and thus allows better relational reasoning and generalisation to achieve more precise driving decisions. Our work outperforms state-of-the-art results on Udacity, Berkeley DeepDrive Video and DBNet data sets. The proposed techniques can be used to construct a unified driving decision-making framework for modular integration of autonomous driving systems.\",\"PeriodicalId\":37058,\"journal\":{\"name\":\"Cyber-Physical Systems\",\"volume\":\"14 1\",\"pages\":\"192 - 209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335777.2021.1901147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2021.1901147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A hierarchical perception decision-making framework for autonomous driving
ABSTRACT Self-driving vehicles have attracted significant attention from both industry and academy. Despite the intensive research efforts on the perception model of environment-awareness, it is still challenging to attain accurate decision-making under real-world driving scenarios. Today’s state-of-the-art solutions typically hinge on end-to-end DNN-based perception-control models, which provide a rather direct way of driving decision-making. However, DNN models may fail in dealing with complex driving scenarios that require relational reasoning. This paper proposes a hierarchical perception decision-making framework for autonomous driving by employing hypergraph-based reasoning, which enables fuse multi-perceptual models to integrate multimodal environmental information. The proposed framework utilises the high-order correlations behind driving behaviours, and thus allows better relational reasoning and generalisation to achieve more precise driving decisions. Our work outperforms state-of-the-art results on Udacity, Berkeley DeepDrive Video and DBNet data sets. The proposed techniques can be used to construct a unified driving decision-making framework for modular integration of autonomous driving systems.