{"title":"杰拉尔德:一个新的数据集,用于检测德国干线铁路信号","authors":"P. Leibner, Fabian Hampel, C. Schindler","doi":"10.1177/09544097231166472","DOIUrl":null,"url":null,"abstract":"In recent years, a strong push towards driverless mobility solutions can be seen in many transportation sectors including railways. While the European Train Control System already specifies the necessary interfaces to open up the possibility of Automatic Train Operation (ATO) for mainline railway vehicles, required infrastructure-side upgrades of interlocking systems are time- and cost-intensive. Alternatively, a pure vehicle-side Automatic Train Operation solution can be conceptualized that relies on processing the same audio-visual input a human train driver would normally base his decisions on. This would require the vehicle-side detection of track-side railway signals to determine the vehicle’s movement authority and allowed maximum speed. Such a signal detection system could furthermore be employed as an Advanced Driver Assistance System (ADAS) or support autonomous shunting operations. To enable such a system, this paper presents GERALD, a novel dataset for a neural network based detection approach of railway signals. The dataset contains 5000 images from a wide variety of railway scenes as well as annotations for the most common types of German mainline railway signals. The material was gathered using publicly available cab-view recordings uploaded by railway enthusiasts on YouTube. Using a state of the art neural network architecture for evaluation, we notice promising detection accuracies despite GERALD being a comparably small dataset. The dataset is freely available for research and non-commercial purposes at: https://github.com/ifs-rwth-aachen/GERALD","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GERALD: A novel dataset for the detection of German mainline railway signals\",\"authors\":\"P. Leibner, Fabian Hampel, C. Schindler\",\"doi\":\"10.1177/09544097231166472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, a strong push towards driverless mobility solutions can be seen in many transportation sectors including railways. While the European Train Control System already specifies the necessary interfaces to open up the possibility of Automatic Train Operation (ATO) for mainline railway vehicles, required infrastructure-side upgrades of interlocking systems are time- and cost-intensive. Alternatively, a pure vehicle-side Automatic Train Operation solution can be conceptualized that relies on processing the same audio-visual input a human train driver would normally base his decisions on. This would require the vehicle-side detection of track-side railway signals to determine the vehicle’s movement authority and allowed maximum speed. Such a signal detection system could furthermore be employed as an Advanced Driver Assistance System (ADAS) or support autonomous shunting operations. To enable such a system, this paper presents GERALD, a novel dataset for a neural network based detection approach of railway signals. The dataset contains 5000 images from a wide variety of railway scenes as well as annotations for the most common types of German mainline railway signals. The material was gathered using publicly available cab-view recordings uploaded by railway enthusiasts on YouTube. Using a state of the art neural network architecture for evaluation, we notice promising detection accuracies despite GERALD being a comparably small dataset. The dataset is freely available for research and non-commercial purposes at: https://github.com/ifs-rwth-aachen/GERALD\",\"PeriodicalId\":54567,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544097231166472\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097231166472","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
GERALD: A novel dataset for the detection of German mainline railway signals
In recent years, a strong push towards driverless mobility solutions can be seen in many transportation sectors including railways. While the European Train Control System already specifies the necessary interfaces to open up the possibility of Automatic Train Operation (ATO) for mainline railway vehicles, required infrastructure-side upgrades of interlocking systems are time- and cost-intensive. Alternatively, a pure vehicle-side Automatic Train Operation solution can be conceptualized that relies on processing the same audio-visual input a human train driver would normally base his decisions on. This would require the vehicle-side detection of track-side railway signals to determine the vehicle’s movement authority and allowed maximum speed. Such a signal detection system could furthermore be employed as an Advanced Driver Assistance System (ADAS) or support autonomous shunting operations. To enable such a system, this paper presents GERALD, a novel dataset for a neural network based detection approach of railway signals. The dataset contains 5000 images from a wide variety of railway scenes as well as annotations for the most common types of German mainline railway signals. The material was gathered using publicly available cab-view recordings uploaded by railway enthusiasts on YouTube. Using a state of the art neural network architecture for evaluation, we notice promising detection accuracies despite GERALD being a comparably small dataset. The dataset is freely available for research and non-commercial purposes at: https://github.com/ifs-rwth-aachen/GERALD
期刊介绍:
The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.