模拟海底和平台生产方案,量化科威特海上瞬态和稳态条件下的流动保障风险

E. Al-Safran
{"title":"模拟海底和平台生产方案,量化科威特海上瞬态和稳态条件下的流动保障风险","authors":"E. Al-Safran","doi":"10.2118/206275-ms","DOIUrl":null,"url":null,"abstract":"\n In offshore production, the type of field development scheme is crucial aspect due to its associated flow assurance risks, which affect project economic, safety, and sustainability. The objective of this study is to simulate and evaluate two offshore field development schemes, namely subsea and platform in offshore Kuwait. Further objective is to carry out detailed transient simulation study on the subsea scheme to investigate flow assurance risks related to terrain slugging, and hydrates formation during shut-in and re-start transient events. The evaluation of the two schemes is based on the associated flow assurance risks, and project economics. Steady state simulations are used to identify the feasible production scheme, which is further simulated under transient shut-in/restart events to investigate flow assurance risks related to terrain slugging and hydrates formation. The steady state simulation results of this study showed that flow assurance risks such as hydrates and pipeline corrosion are significant in both production schemes. To mitigate these risks, sixteen different field development designs of both production schemes were simulated and economically evaluated. Results revealed that the subsea multiphase development scheme with 10-in. ID carbon steel multiphase flowline and 0.3-in. thick polypropylene thermal insulation is the optimum design. Consequently, the optimum design is further analyzed under transient conditions, resulting in appreciable risk of terrain slugging due to hilly-terrain pipeline configuration, especially for the low production rate cases. The transient shut-in/restart simulation results revealed a risk of hydrates formation due to cooling effect during shut-in, which is mitigated by MEG injection. In conclusion, the subsea multiphase flow scheme is selected over platform scheme due to manageable flow assurance risks, low capital investment cost, and minimum environmental impact. This study would enable Kuwait Oil Company to evaluate different offshore development schemes to ensure sustainable production with safe operation and protected environment.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Subsea and Platform Production Schemes to Quantify Flow Assurance Risks under Transient and Steady State Conditions in Offshore Kuwait\",\"authors\":\"E. Al-Safran\",\"doi\":\"10.2118/206275-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In offshore production, the type of field development scheme is crucial aspect due to its associated flow assurance risks, which affect project economic, safety, and sustainability. The objective of this study is to simulate and evaluate two offshore field development schemes, namely subsea and platform in offshore Kuwait. Further objective is to carry out detailed transient simulation study on the subsea scheme to investigate flow assurance risks related to terrain slugging, and hydrates formation during shut-in and re-start transient events. The evaluation of the two schemes is based on the associated flow assurance risks, and project economics. Steady state simulations are used to identify the feasible production scheme, which is further simulated under transient shut-in/restart events to investigate flow assurance risks related to terrain slugging and hydrates formation. The steady state simulation results of this study showed that flow assurance risks such as hydrates and pipeline corrosion are significant in both production schemes. To mitigate these risks, sixteen different field development designs of both production schemes were simulated and economically evaluated. Results revealed that the subsea multiphase development scheme with 10-in. ID carbon steel multiphase flowline and 0.3-in. thick polypropylene thermal insulation is the optimum design. Consequently, the optimum design is further analyzed under transient conditions, resulting in appreciable risk of terrain slugging due to hilly-terrain pipeline configuration, especially for the low production rate cases. The transient shut-in/restart simulation results revealed a risk of hydrates formation due to cooling effect during shut-in, which is mitigated by MEG injection. In conclusion, the subsea multiphase flow scheme is selected over platform scheme due to manageable flow assurance risks, low capital investment cost, and minimum environmental impact. This study would enable Kuwait Oil Company to evaluate different offshore development schemes to ensure sustainable production with safe operation and protected environment.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206275-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206275-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在海上生产中,油田开发方案的类型是至关重要的,因为它涉及到流动保障风险,影响项目的经济性、安全性和可持续性。本研究的目的是模拟和评估两种海上油田开发方案,即科威特海上的海底和平台。进一步的目标是对海底方案进行详细的瞬态模拟研究,以调查在关井和重新启动瞬态事件期间与地形段塞和水合物形成相关的流动保障风险。对这两种方案的评价是基于相关的流量保障风险和项目经济性。稳态模拟用于确定可行的生产方案,并进一步模拟瞬态关井/重启事件,以研究与地形段塞和水合物形成相关的流动保障风险。稳态模拟结果表明,两种生产方案均存在水合物和管道腐蚀等流动保障风险。为了降低这些风险,对两种生产方案的16种不同的油田开发设计进行了模拟和经济评估。结果表明,采用10-in的水下多相开发方案。ID碳钢多相流线和0.3 in。厚聚丙烯保温层是最佳设计。因此,在瞬态条件下进一步分析优化设计,由于丘陵地形的管道配置,特别是在低产量情况下,地形段塞的风险明显。暂态关井/重启模拟结果显示,由于关井期间的冷却效应,存在水合物形成的风险,MEG注入可以缓解这一风险。综上所述,由于流动保障风险可控、资本投资成本低、对环境影响最小,因此选择海底多相流方案优于平台方案。这项研究将使科威特石油公司能够评估不同的海上开发方案,以确保安全作业和保护环境的可持续生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Subsea and Platform Production Schemes to Quantify Flow Assurance Risks under Transient and Steady State Conditions in Offshore Kuwait
In offshore production, the type of field development scheme is crucial aspect due to its associated flow assurance risks, which affect project economic, safety, and sustainability. The objective of this study is to simulate and evaluate two offshore field development schemes, namely subsea and platform in offshore Kuwait. Further objective is to carry out detailed transient simulation study on the subsea scheme to investigate flow assurance risks related to terrain slugging, and hydrates formation during shut-in and re-start transient events. The evaluation of the two schemes is based on the associated flow assurance risks, and project economics. Steady state simulations are used to identify the feasible production scheme, which is further simulated under transient shut-in/restart events to investigate flow assurance risks related to terrain slugging and hydrates formation. The steady state simulation results of this study showed that flow assurance risks such as hydrates and pipeline corrosion are significant in both production schemes. To mitigate these risks, sixteen different field development designs of both production schemes were simulated and economically evaluated. Results revealed that the subsea multiphase development scheme with 10-in. ID carbon steel multiphase flowline and 0.3-in. thick polypropylene thermal insulation is the optimum design. Consequently, the optimum design is further analyzed under transient conditions, resulting in appreciable risk of terrain slugging due to hilly-terrain pipeline configuration, especially for the low production rate cases. The transient shut-in/restart simulation results revealed a risk of hydrates formation due to cooling effect during shut-in, which is mitigated by MEG injection. In conclusion, the subsea multiphase flow scheme is selected over platform scheme due to manageable flow assurance risks, low capital investment cost, and minimum environmental impact. This study would enable Kuwait Oil Company to evaluate different offshore development schemes to ensure sustainable production with safe operation and protected environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信