生物材料可持续聚合物的研究进展

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ian R. Campbell, Meng-Yen Lin, Hareesh Iyer, Mallory Parker, Jeremy L. Fredricks, Kuo-Sung Liao, Andrew M. Jimenez, P. Grandgeorge, E. Roumeli
{"title":"生物材料可持续聚合物的研究进展","authors":"Ian R. Campbell, Meng-Yen Lin, Hareesh Iyer, Mallory Parker, Jeremy L. Fredricks, Kuo-Sung Liao, Andrew M. Jimenez, P. Grandgeorge, E. Roumeli","doi":"10.1146/annurev-matsci-080921-083655","DOIUrl":null,"url":null,"abstract":"The increasing consumption of nonrenewable materials urgently calls for the design and fabrication of sustainable alternatives. New generations of materials should be derived from renewable sources, processed using environmentally friendly methods, and designed considering their full life cycle, especially their end-of-life fate. Here, we review recent advances in developing sustainable polymers from biological matter (biomatter), including progress in the extraction and utilization of bioderived monomers and polymers, as well as the emergence of polymers produced directly from unprocessed biomatter (entire cells or tissues). We also discuss applications of sustainable polymers in bioplastics, biocomposites, and cementitious biomaterials, with emphasis on relating their performance to underlying fundamental mechanisms. Finally, we provide a future outlook for sustainable material development, highlighting the need for more accurate and accessible tools for assessing life-cycle impacts and socioeconomic challenges as this field advances. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"76 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Progress in Sustainable Polymers from Biological Matter\",\"authors\":\"Ian R. Campbell, Meng-Yen Lin, Hareesh Iyer, Mallory Parker, Jeremy L. Fredricks, Kuo-Sung Liao, Andrew M. Jimenez, P. Grandgeorge, E. Roumeli\",\"doi\":\"10.1146/annurev-matsci-080921-083655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing consumption of nonrenewable materials urgently calls for the design and fabrication of sustainable alternatives. New generations of materials should be derived from renewable sources, processed using environmentally friendly methods, and designed considering their full life cycle, especially their end-of-life fate. Here, we review recent advances in developing sustainable polymers from biological matter (biomatter), including progress in the extraction and utilization of bioderived monomers and polymers, as well as the emergence of polymers produced directly from unprocessed biomatter (entire cells or tissues). We also discuss applications of sustainable polymers in bioplastics, biocomposites, and cementitious biomaterials, with emphasis on relating their performance to underlying fundamental mechanisms. Finally, we provide a future outlook for sustainable material development, highlighting the need for more accurate and accessible tools for assessing life-cycle impacts and socioeconomic challenges as this field advances. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-matsci-080921-083655\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-080921-083655","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

不可再生材料的消耗日益增加,迫切需要设计和制造可持续的替代品。新一代的材料应该来自可再生资源,使用环境友好的方法进行加工,并考虑到它们的整个生命周期,特别是它们的生命周期结束的命运。在这里,我们回顾了从生物物质(生物物质)中开发可持续聚合物的最新进展,包括生物衍生单体和聚合物的提取和利用的进展,以及直接从未加工的生物物质(整个细胞或组织)中生产聚合物的出现。我们还讨论了可持续聚合物在生物塑料、生物复合材料和胶凝生物材料中的应用,重点是将它们的性能与潜在的基本机制联系起来。最后,我们展望了可持续材料发展的未来,强调随着该领域的发展,需要更准确、更容易获取的工具来评估生命周期影响和社会经济挑战。预计《材料研究年度评论》第53卷的最终在线出版日期为2023年7月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress in Sustainable Polymers from Biological Matter
The increasing consumption of nonrenewable materials urgently calls for the design and fabrication of sustainable alternatives. New generations of materials should be derived from renewable sources, processed using environmentally friendly methods, and designed considering their full life cycle, especially their end-of-life fate. Here, we review recent advances in developing sustainable polymers from biological matter (biomatter), including progress in the extraction and utilization of bioderived monomers and polymers, as well as the emergence of polymers produced directly from unprocessed biomatter (entire cells or tissues). We also discuss applications of sustainable polymers in bioplastics, biocomposites, and cementitious biomaterials, with emphasis on relating their performance to underlying fundamental mechanisms. Finally, we provide a future outlook for sustainable material development, highlighting the need for more accurate and accessible tools for assessing life-cycle impacts and socioeconomic challenges as this field advances. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信