具有移位参数的高阶广义几何多项式

IF 0.6 4区 数学 Q3 MATHEMATICS
J. Adell, B. Bényi, S. Nkonkobe
{"title":"具有移位参数的高阶广义几何多项式","authors":"J. Adell, B. Bényi, S. Nkonkobe","doi":"10.2989/16073606.2022.2035843","DOIUrl":null,"url":null,"abstract":"Abstract We study a special class of higher order generalized geometric polynomials. Based on our combinatorial interpretation of labeled barred preferential arrangements, we prove several recursions. We also study the polynomials from a probabilistic point of view, and show how our polynomials can be written in terms of the expectation of a random descending factorial involving the negative binomial process. Using techniques of probability theory, we derive identities, in particular we extend Nelsen's theorem.","PeriodicalId":49652,"journal":{"name":"Quaestiones Mathematicae","volume":"36 1","pages":"551 - 567"},"PeriodicalIF":0.6000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On higher order generalized geometric polynomials with shifted parameters\",\"authors\":\"J. Adell, B. Bényi, S. Nkonkobe\",\"doi\":\"10.2989/16073606.2022.2035843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study a special class of higher order generalized geometric polynomials. Based on our combinatorial interpretation of labeled barred preferential arrangements, we prove several recursions. We also study the polynomials from a probabilistic point of view, and show how our polynomials can be written in terms of the expectation of a random descending factorial involving the negative binomial process. Using techniques of probability theory, we derive identities, in particular we extend Nelsen's theorem.\",\"PeriodicalId\":49652,\"journal\":{\"name\":\"Quaestiones Mathematicae\",\"volume\":\"36 1\",\"pages\":\"551 - 567\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaestiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2989/16073606.2022.2035843\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaestiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2989/16073606.2022.2035843","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究一类特殊的高阶广义几何多项式。基于我们对标记禁止优先安排的组合解释,我们证明了几个递归。我们还从概率的角度研究了多项式,并展示了我们的多项式如何可以用包含负二项过程的随机下降阶乘的期望来表示。利用概率论的技术,我们推导出恒等式,特别是扩展了尼尔森定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On higher order generalized geometric polynomials with shifted parameters
Abstract We study a special class of higher order generalized geometric polynomials. Based on our combinatorial interpretation of labeled barred preferential arrangements, we prove several recursions. We also study the polynomials from a probabilistic point of view, and show how our polynomials can be written in terms of the expectation of a random descending factorial involving the negative binomial process. Using techniques of probability theory, we derive identities, in particular we extend Nelsen's theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quaestiones Mathematicae
Quaestiones Mathematicae 数学-数学
CiteScore
1.70
自引率
0.00%
发文量
121
审稿时长
>12 weeks
期刊介绍: Quaestiones Mathematicae is devoted to research articles from a wide range of mathematical areas. Longer expository papers of exceptional quality are also considered. Published in English, the journal receives contributions from authors around the globe and serves as an important reference source for anyone interested in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信