设计光纤到家庭千兆无源光网络乌达亚那大学苏迪曼校区

P. K. Sudiarta
{"title":"设计光纤到家庭千兆无源光网络乌达亚那大学苏迪曼校区","authors":"P. K. Sudiarta","doi":"10.24843/jeei.2021.v05.i02.p02","DOIUrl":null,"url":null,"abstract":"To find out the need for fiber optic access network devices from NOC to rooms at Udayana University, Sudirman Campus, fiber to the home network design was made with Gigabit Passive Optical Network (GPON) technology. Selection of GPON technology to reduce the number of ports on OLT and the number of fiber cores compared to the existing technology using point to point. Assuming the bitrate in each room is 21 Mbps and 291 rooms to be served, it takes 5 OLT ports on the NOC. Feeder Cable Network consists of 5 cores distributed to each location using 3 units of 1: 4 splitter, 4 units of 1: 8 splitter, 6 units of 1:16 splitter, 1:32 splitter of 6 units. To maintain service quality, 16 amplifiers are needed. The required fiber cable length is 2.5 km. The quality of service is tested using the Optisystem simulator. The result is that at the closest distance the PRx value is -14.059 dBm, with BER 6.13608 e-103, Q Factor 21.511. Meanwhile, at the farthest distance, the PRx value is -14.105 dBm, with BER of 1.52751 e-120, and Q Factor 23.3159. The results obtained still meet the ITU-T G.984.2 standard","PeriodicalId":52825,"journal":{"name":"Journal of Electrical Electronics and Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DESIGN FIBER TO THE HOME GIGABIT PASSIVE OPTICAL NETWORK UDAYANA UNIVERSITY, SUDIRMAN CAMPUS\",\"authors\":\"P. K. Sudiarta\",\"doi\":\"10.24843/jeei.2021.v05.i02.p02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To find out the need for fiber optic access network devices from NOC to rooms at Udayana University, Sudirman Campus, fiber to the home network design was made with Gigabit Passive Optical Network (GPON) technology. Selection of GPON technology to reduce the number of ports on OLT and the number of fiber cores compared to the existing technology using point to point. Assuming the bitrate in each room is 21 Mbps and 291 rooms to be served, it takes 5 OLT ports on the NOC. Feeder Cable Network consists of 5 cores distributed to each location using 3 units of 1: 4 splitter, 4 units of 1: 8 splitter, 6 units of 1:16 splitter, 1:32 splitter of 6 units. To maintain service quality, 16 amplifiers are needed. The required fiber cable length is 2.5 km. The quality of service is tested using the Optisystem simulator. The result is that at the closest distance the PRx value is -14.059 dBm, with BER 6.13608 e-103, Q Factor 21.511. Meanwhile, at the farthest distance, the PRx value is -14.105 dBm, with BER of 1.52751 e-120, and Q Factor 23.3159. The results obtained still meet the ITU-T G.984.2 standard\",\"PeriodicalId\":52825,\"journal\":{\"name\":\"Journal of Electrical Electronics and Informatics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Electronics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/jeei.2021.v05.i02.p02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/jeei.2021.v05.i02.p02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了找出从NOC到Sudirman校区房间的光纤接入网络设备的需求,采用千兆无源光网络(GPON)技术进行了光纤到家庭网络设计。与现有采用点对点的技术相比,选择GPON技术减少了OLT上的端口数和光纤芯数。假设每个房间的比特率为21 Mbps,并且要服务291个房间,那么在NOC上需要5个OLT端口。馈线电缆网络由5芯组成,分布在每个位置,使用3个1:4分路器,4个1:8分路器,6个1:16分路器,6个1:32分路器。为了保持服务质量,需要16个放大器。要求的光纤长度为2.5 km。使用Optisystem模拟器测试服务质量。结果表明,在最近距离处,PRx值为-14.059 dBm,误差率为6.13608 e-103, Q因子为21.511。同时,在最远距离处,PRx值为-14.105 dBm,误码率为1.52751 e-120, Q因子为23.3159。所得结果仍符合ITU-T G.984.2标准
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DESIGN FIBER TO THE HOME GIGABIT PASSIVE OPTICAL NETWORK UDAYANA UNIVERSITY, SUDIRMAN CAMPUS
To find out the need for fiber optic access network devices from NOC to rooms at Udayana University, Sudirman Campus, fiber to the home network design was made with Gigabit Passive Optical Network (GPON) technology. Selection of GPON technology to reduce the number of ports on OLT and the number of fiber cores compared to the existing technology using point to point. Assuming the bitrate in each room is 21 Mbps and 291 rooms to be served, it takes 5 OLT ports on the NOC. Feeder Cable Network consists of 5 cores distributed to each location using 3 units of 1: 4 splitter, 4 units of 1: 8 splitter, 6 units of 1:16 splitter, 1:32 splitter of 6 units. To maintain service quality, 16 amplifiers are needed. The required fiber cable length is 2.5 km. The quality of service is tested using the Optisystem simulator. The result is that at the closest distance the PRx value is -14.059 dBm, with BER 6.13608 e-103, Q Factor 21.511. Meanwhile, at the farthest distance, the PRx value is -14.105 dBm, with BER of 1.52751 e-120, and Q Factor 23.3159. The results obtained still meet the ITU-T G.984.2 standard
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信