数据流异常点检测的研究问题

Md. Shiblee Sadik, L. Gruenwald
{"title":"数据流异常点检测的研究问题","authors":"Md. Shiblee Sadik, L. Gruenwald","doi":"10.1145/2594473.2594479","DOIUrl":null,"url":null,"abstract":"In applications, such as sensor networks and power usage monitoring, data are in the form of streams, each of which is an infinite sequence of data points with explicit or implicit timestamps and has special characteristics, such as transiency, uncertainty, dynamic data distribution, multidimensionality, and dynamic relationship. These characteristics introduce new research issues that make outlier detection for stream data more challenging than that for regular (non-stream) data. This paper discusses those research issues for applications where data come from a single stream as well as multiple streams.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"19 1","pages":"33-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Research issues in outlier detection for data streams\",\"authors\":\"Md. Shiblee Sadik, L. Gruenwald\",\"doi\":\"10.1145/2594473.2594479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In applications, such as sensor networks and power usage monitoring, data are in the form of streams, each of which is an infinite sequence of data points with explicit or implicit timestamps and has special characteristics, such as transiency, uncertainty, dynamic data distribution, multidimensionality, and dynamic relationship. These characteristics introduce new research issues that make outlier detection for stream data more challenging than that for regular (non-stream) data. This paper discusses those research issues for applications where data come from a single stream as well as multiple streams.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"19 1\",\"pages\":\"33-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2594473.2594479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594473.2594479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

在传感器网络和电力使用监测等应用中,数据以流的形式存在,每个流都是带有显式或隐式时间戳的数据点的无限序列,并且具有瞬态、不确定性、动态数据分布、多维度和动态关系等特殊特征。这些特征带来了新的研究问题,使得流数据的异常值检测比常规(非流)数据的异常值检测更具挑战性。本文讨论了数据来自单个流和多个流的应用的研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research issues in outlier detection for data streams
In applications, such as sensor networks and power usage monitoring, data are in the form of streams, each of which is an infinite sequence of data points with explicit or implicit timestamps and has special characteristics, such as transiency, uncertainty, dynamic data distribution, multidimensionality, and dynamic relationship. These characteristics introduce new research issues that make outlier detection for stream data more challenging than that for regular (non-stream) data. This paper discusses those research issues for applications where data come from a single stream as well as multiple streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信