关于N维环域上各向异性N-拉普拉斯算子的自由边值问题

Pub Date : 2020-07-01 DOI:10.2478/auom-2020-0027
A. Nicolescu, S. Vlase
{"title":"关于N维环域上各向异性N-拉普拉斯算子的自由边值问题","authors":"A. Nicolescu, S. Vlase","doi":"10.2478/auom-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\\Ω¯1⊂𝕉N \\Omega : = {\\Omega _0}\\backslash {\\bar \\Omega _1} \\subset {\\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a free boundary value problem for the anisotropic N-Laplace operator on an N−dimensional ring domain\",\"authors\":\"A. Nicolescu, S. Vlase\",\"doi\":\"10.2478/auom-2020-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\\\\Ω¯1⊂𝕉N \\\\Omega : = {\\\\Omega _0}\\\\backslash {\\\\bar \\\\Omega _1} \\\\subset {\\\\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究环域上各向性N-拉普拉斯算子的自由边值问题Ω:=Ω0\Ω¯1∧𝕉N \Omega:= {\Omega _0 }\backslash{\bar\Omega _1 } \subset{\mathbb{R} ^N } , n≥2。我们的目的是表明,如果问题在合适的弱意义上有解,则底层域Ω是一个Wulff形环。该证明利用了L.E. Payne意义上的一个合适的p函数的极大值原理和一些涉及自由边界各向异性平均曲率的几何参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a free boundary value problem for the anisotropic N-Laplace operator on an N−dimensional ring domain
Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\Ω¯1⊂𝕉N \Omega : = {\Omega _0}\backslash {\bar \Omega _1} \subset {\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信