{"title":"关于N维环域上各向异性N-拉普拉斯算子的自由边值问题","authors":"A. Nicolescu, S. Vlase","doi":"10.2478/auom-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\\Ω¯1⊂N \\Omega : = {\\Omega _0}\\backslash {\\bar \\Omega _1} \\subset {\\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"21 1","pages":"195 - 208"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a free boundary value problem for the anisotropic N-Laplace operator on an N−dimensional ring domain\",\"authors\":\"A. Nicolescu, S. Vlase\",\"doi\":\"10.2478/auom-2020-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\\\\Ω¯1⊂N \\\\Omega : = {\\\\Omega _0}\\\\backslash {\\\\bar \\\\Omega _1} \\\\subset {\\\\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"21 1\",\"pages\":\"195 - 208\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a free boundary value problem for the anisotropic N-Laplace operator on an N−dimensional ring domain
Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\Ω¯1⊂N \Omega : = {\Omega _0}\backslash {\bar \Omega _1} \subset {\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.