{"title":"关于N维环域上各向异性N-拉普拉斯算子的自由边值问题","authors":"A. Nicolescu, S. Vlase","doi":"10.2478/auom-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\\Ω¯1⊂N \\Omega : = {\\Omega _0}\\backslash {\\bar \\Omega _1} \\subset {\\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a free boundary value problem for the anisotropic N-Laplace operator on an N−dimensional ring domain\",\"authors\":\"A. Nicolescu, S. Vlase\",\"doi\":\"10.2478/auom-2020-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\\\\Ω¯1⊂N \\\\Omega : = {\\\\Omega _0}\\\\backslash {\\\\bar \\\\Omega _1} \\\\subset {\\\\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a free boundary value problem for the anisotropic N-Laplace operator on an N−dimensional ring domain
Abstract In this paper we are going to investigate a free boundary value problem for the anisotropic N-Laplace operator on a ring domain Ω:=Ω0\Ω¯1⊂N \Omega : = {\Omega _0}\backslash {\bar \Omega _1} \subset {\mathbb{R}^N} , N ≥ 2. Our aim is to show that if the problem admits a solution in a suitable weak sense, then the underlying domain Ω is a Wulff shaped ring. The proof makes use of a maximum principle for an appropriate P-function, in the sense of L.E. Payne and some geometric arguments involving the anisotropic mean curvature of the free boundary.