ag修饰的超多孔ZnO纳米粒子网络的超灵敏室温化学传感器

Hongjun Chen, Renheng Bo, Lu Qi, A. Dodd, M. Saunders, T. White, T. Tsuzuki, A. Tricoli
{"title":"ag修饰的超多孔ZnO纳米粒子网络的超灵敏室温化学传感器","authors":"Hongjun Chen, Renheng Bo, Lu Qi, A. Dodd, M. Saunders, T. White, T. Tsuzuki, A. Tricoli","doi":"10.1109/SENSORS43011.2019.8956926","DOIUrl":null,"url":null,"abstract":"Highly sensitive room temperature gas sensors consisting of ultraporous ZnO nanoparticle networks decorated with Ag nanoparticles (NPs) were fabricated by nanoparticle aerosol self-assembly and sequential sputtering. Optimization of the AgNPs loading and the thickness of ultraporous ZnO networks lead to a sensor response, defined as the ratio of resistance change, of 1.8 and 7.4 at 0.1 and 1 ppm ethanol concentrations, respectively, at room temperature under light irradiation. This is ~ 10 times higher than that of pure ultraporous ZnO film under the same experimental conditions. Furthermore, the optimal AgNPs-decorated ultraporous ZnO films can detect as low as 5 ppb of ethanol gas at room temperature under light illumination. The high sensitivity of AgNPs-decorated ZnO film can be ascribed to the synergistic effects of the ultraporous nanoparticle network morphology, AgNPs sensitization and light-assisted photo-excited gas-sensing process. These provide directions for the design of high sensitive metal-oxide semiconductor-based gas sensors capable to operate at room temperature.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive room-temperature chemical sensors by Ag-decorated ultraporous ZnO nanoparticle networks\",\"authors\":\"Hongjun Chen, Renheng Bo, Lu Qi, A. Dodd, M. Saunders, T. White, T. Tsuzuki, A. Tricoli\",\"doi\":\"10.1109/SENSORS43011.2019.8956926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly sensitive room temperature gas sensors consisting of ultraporous ZnO nanoparticle networks decorated with Ag nanoparticles (NPs) were fabricated by nanoparticle aerosol self-assembly and sequential sputtering. Optimization of the AgNPs loading and the thickness of ultraporous ZnO networks lead to a sensor response, defined as the ratio of resistance change, of 1.8 and 7.4 at 0.1 and 1 ppm ethanol concentrations, respectively, at room temperature under light irradiation. This is ~ 10 times higher than that of pure ultraporous ZnO film under the same experimental conditions. Furthermore, the optimal AgNPs-decorated ultraporous ZnO films can detect as low as 5 ppb of ethanol gas at room temperature under light illumination. The high sensitivity of AgNPs-decorated ZnO film can be ascribed to the synergistic effects of the ultraporous nanoparticle network morphology, AgNPs sensitization and light-assisted photo-excited gas-sensing process. These provide directions for the design of high sensitive metal-oxide semiconductor-based gas sensors capable to operate at room temperature.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用纳米粒子气溶胶自组装和顺序溅射的方法,制备了由银纳米粒子修饰的超多孔ZnO纳米粒子网络组成的高灵敏度室温气体传感器。优化AgNPs负载和超多孔ZnO网络的厚度,在室温下光照下,当乙醇浓度为0.1 ppm和1 ppm时,传感器响应分别为1.8和7.4。在相同的实验条件下,这是纯超多孔ZnO薄膜的10倍以上。此外,最佳的agnps修饰的超多孔ZnO薄膜在光照下可以在室温下检测低至5 ppb的乙醇气体。AgNPs修饰ZnO薄膜的高灵敏度可归因于超多孔纳米颗粒网络形态、AgNPs敏化和光辅助光激发气敏工艺的协同作用。这为设计能够在室温下工作的高灵敏度金属氧化物半导体气体传感器提供了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasensitive room-temperature chemical sensors by Ag-decorated ultraporous ZnO nanoparticle networks
Highly sensitive room temperature gas sensors consisting of ultraporous ZnO nanoparticle networks decorated with Ag nanoparticles (NPs) were fabricated by nanoparticle aerosol self-assembly and sequential sputtering. Optimization of the AgNPs loading and the thickness of ultraporous ZnO networks lead to a sensor response, defined as the ratio of resistance change, of 1.8 and 7.4 at 0.1 and 1 ppm ethanol concentrations, respectively, at room temperature under light irradiation. This is ~ 10 times higher than that of pure ultraporous ZnO film under the same experimental conditions. Furthermore, the optimal AgNPs-decorated ultraporous ZnO films can detect as low as 5 ppb of ethanol gas at room temperature under light illumination. The high sensitivity of AgNPs-decorated ZnO film can be ascribed to the synergistic effects of the ultraporous nanoparticle network morphology, AgNPs sensitization and light-assisted photo-excited gas-sensing process. These provide directions for the design of high sensitive metal-oxide semiconductor-based gas sensors capable to operate at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信