{"title":"一种新的单失效模式和双失效模式系统的失效次数模型:基于哈密顿蒙特卡罗模拟的贝叶斯研究","authors":"B. Abba, Hong Wang","doi":"10.1177/1748006x221146367","DOIUrl":null,"url":null,"abstract":"This paper presents an additive Gompertz-Weibull (AGW) distribution, a four-parameter hybrid probability distribution, and its applications in reliability engineering. The failure rate (FR) function of the proposed model demonstrates an increasing trend and a variety of bathtub shapes with or without a low and yet long-stable segment, making it appropriate for modelling a wide variety of real-world problems. Some relationships between the AGW’s FR and its mean residual life functions are examined. For parameter estimation, maximum likelihood and Bayesian inferences are considered. For posterior simulations, we use Hamiltonian Monte Carlo to evaluate the Bayes estimators of the AGW parameters. We evaluate the performance of the proposed AGW model to that of other recent bathtub distributions constructed following the same approach on three failure time datasets. The first two datasets represent device failure times, while the third represents early cable-joint failure times, all with bathtub FR. For comparison, five parametric and nonparametric evaluation criteria and the fitted FR and mean residual life curves were employed. The results indicated that the AGW model would be the best choice for describing failure times, especially when the bathtub-shaped FR of the presented dataset exhibits its three segments.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new failure times model for one and two failure modes system: A Bayesian study with Hamiltonian Monte Carlo simulation\",\"authors\":\"B. Abba, Hong Wang\",\"doi\":\"10.1177/1748006x221146367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an additive Gompertz-Weibull (AGW) distribution, a four-parameter hybrid probability distribution, and its applications in reliability engineering. The failure rate (FR) function of the proposed model demonstrates an increasing trend and a variety of bathtub shapes with or without a low and yet long-stable segment, making it appropriate for modelling a wide variety of real-world problems. Some relationships between the AGW’s FR and its mean residual life functions are examined. For parameter estimation, maximum likelihood and Bayesian inferences are considered. For posterior simulations, we use Hamiltonian Monte Carlo to evaluate the Bayes estimators of the AGW parameters. We evaluate the performance of the proposed AGW model to that of other recent bathtub distributions constructed following the same approach on three failure time datasets. The first two datasets represent device failure times, while the third represents early cable-joint failure times, all with bathtub FR. For comparison, five parametric and nonparametric evaluation criteria and the fitted FR and mean residual life curves were employed. The results indicated that the AGW model would be the best choice for describing failure times, especially when the bathtub-shaped FR of the presented dataset exhibits its three segments.\",\"PeriodicalId\":51266,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x221146367\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x221146367","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A new failure times model for one and two failure modes system: A Bayesian study with Hamiltonian Monte Carlo simulation
This paper presents an additive Gompertz-Weibull (AGW) distribution, a four-parameter hybrid probability distribution, and its applications in reliability engineering. The failure rate (FR) function of the proposed model demonstrates an increasing trend and a variety of bathtub shapes with or without a low and yet long-stable segment, making it appropriate for modelling a wide variety of real-world problems. Some relationships between the AGW’s FR and its mean residual life functions are examined. For parameter estimation, maximum likelihood and Bayesian inferences are considered. For posterior simulations, we use Hamiltonian Monte Carlo to evaluate the Bayes estimators of the AGW parameters. We evaluate the performance of the proposed AGW model to that of other recent bathtub distributions constructed following the same approach on three failure time datasets. The first two datasets represent device failure times, while the third represents early cable-joint failure times, all with bathtub FR. For comparison, five parametric and nonparametric evaluation criteria and the fitted FR and mean residual life curves were employed. The results indicated that the AGW model would be the best choice for describing failure times, especially when the bathtub-shaped FR of the presented dataset exhibits its three segments.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome