Depeng Qiu, Weiyuan Duan, A. Lambertz, K. Bittkau, Kaifu Qiu, K. Ding
{"title":"超薄n型氢化纳米晶硅在硅异质结太阳能电池中的应用","authors":"Depeng Qiu, Weiyuan Duan, A. Lambertz, K. Bittkau, Kaifu Qiu, K. Ding","doi":"10.1109/PVSC43889.2021.9518937","DOIUrl":null,"url":null,"abstract":"To optimize the electrical performance of silicon heterojunction solar cell devices, the electronic properties and microstructure of n-type nc-Si:H were characterized and analyzed. It was found that higher conductivity and crystalline volume fraction (F<inf>c</inf>) of nc-Si:H can be obtained at lower silane gas fraction (f<inf>SiH4</inf>), lower power and higher phosphorous gas fraction (f<inf>PH3</inf>). In our case, there is a decline of the passivation for the devices with nc-Si:H after sputtering process. By increasing the phosphine flow fraction, the sputter damage can be reduced and 3%<inf>abs</inf> gain of FF as well as 0.7%<inf>abs</inf> gain of efficiency is reached compared with reference. The best solar cell exhibits the V<inf>oc</inf> of 733.3 mV, FF of 79.7%, J<inf>sc</inf> of 39.00 mA/cm<sup>2</sup> and η of 22.79% at the M2 size wafer.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"70 1","pages":"0806-0808"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of ultra-thin n-type Hydrogenated Nanocrystalline Silicon for Silicon Heterojunction Solar Cells\",\"authors\":\"Depeng Qiu, Weiyuan Duan, A. Lambertz, K. Bittkau, Kaifu Qiu, K. Ding\",\"doi\":\"10.1109/PVSC43889.2021.9518937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To optimize the electrical performance of silicon heterojunction solar cell devices, the electronic properties and microstructure of n-type nc-Si:H were characterized and analyzed. It was found that higher conductivity and crystalline volume fraction (F<inf>c</inf>) of nc-Si:H can be obtained at lower silane gas fraction (f<inf>SiH4</inf>), lower power and higher phosphorous gas fraction (f<inf>PH3</inf>). In our case, there is a decline of the passivation for the devices with nc-Si:H after sputtering process. By increasing the phosphine flow fraction, the sputter damage can be reduced and 3%<inf>abs</inf> gain of FF as well as 0.7%<inf>abs</inf> gain of efficiency is reached compared with reference. The best solar cell exhibits the V<inf>oc</inf> of 733.3 mV, FF of 79.7%, J<inf>sc</inf> of 39.00 mA/cm<sup>2</sup> and η of 22.79% at the M2 size wafer.\",\"PeriodicalId\":6788,\"journal\":{\"name\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"70 1\",\"pages\":\"0806-0808\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC43889.2021.9518937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilization of ultra-thin n-type Hydrogenated Nanocrystalline Silicon for Silicon Heterojunction Solar Cells
To optimize the electrical performance of silicon heterojunction solar cell devices, the electronic properties and microstructure of n-type nc-Si:H were characterized and analyzed. It was found that higher conductivity and crystalline volume fraction (Fc) of nc-Si:H can be obtained at lower silane gas fraction (fSiH4), lower power and higher phosphorous gas fraction (fPH3). In our case, there is a decline of the passivation for the devices with nc-Si:H after sputtering process. By increasing the phosphine flow fraction, the sputter damage can be reduced and 3%abs gain of FF as well as 0.7%abs gain of efficiency is reached compared with reference. The best solar cell exhibits the Voc of 733.3 mV, FF of 79.7%, Jsc of 39.00 mA/cm2 and η of 22.79% at the M2 size wafer.