{"title":"用D-vine分位数回归的部门电力消费模型:美国电力市场案例","authors":"O. Evkaya, Bilgi Yilmaz, Ebru Yüksel Haliloğlu","doi":"10.1080/15567249.2022.2160523","DOIUrl":null,"url":null,"abstract":"ABSTRACT Efficient electricity demand planning is crucial for energy market actors. However, it is difficult as a consequence of climate change. We aim at investigating how climate variables (heating and cooling degree days) may affect electricity demand. By examining electricity consumption in various US sectors, we explore this relationship using parametric and non-parametric D-vine quantile regression models that exploits the dependence between covariates and allows sequential covariate selection. The results are compared against the classical linear quantile regression. We find a positive effect of the climatic variables on electricity consumption that is as heating and cooling degree days increase electricity demand rises in all sectors, and cooling need has a greater impact than heating need. Evidence suggests that residential and commercial electricity consumptions are affected the most, while industrial and transport sector consumptions are less sensitive. The D-vine quantile regression performs better than the linear quantile regression for almost all sectors.","PeriodicalId":51247,"journal":{"name":"Energy Sources Part B-Economics Planning and Policy","volume":"104 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sectoral electricity consumption modeling with D-vine quantile regression: The US electricity market case\",\"authors\":\"O. Evkaya, Bilgi Yilmaz, Ebru Yüksel Haliloğlu\",\"doi\":\"10.1080/15567249.2022.2160523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Efficient electricity demand planning is crucial for energy market actors. However, it is difficult as a consequence of climate change. We aim at investigating how climate variables (heating and cooling degree days) may affect electricity demand. By examining electricity consumption in various US sectors, we explore this relationship using parametric and non-parametric D-vine quantile regression models that exploits the dependence between covariates and allows sequential covariate selection. The results are compared against the classical linear quantile regression. We find a positive effect of the climatic variables on electricity consumption that is as heating and cooling degree days increase electricity demand rises in all sectors, and cooling need has a greater impact than heating need. Evidence suggests that residential and commercial electricity consumptions are affected the most, while industrial and transport sector consumptions are less sensitive. The D-vine quantile regression performs better than the linear quantile regression for almost all sectors.\",\"PeriodicalId\":51247,\"journal\":{\"name\":\"Energy Sources Part B-Economics Planning and Policy\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Sources Part B-Economics Planning and Policy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567249.2022.2160523\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Sources Part B-Economics Planning and Policy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567249.2022.2160523","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sectoral electricity consumption modeling with D-vine quantile regression: The US electricity market case
ABSTRACT Efficient electricity demand planning is crucial for energy market actors. However, it is difficult as a consequence of climate change. We aim at investigating how climate variables (heating and cooling degree days) may affect electricity demand. By examining electricity consumption in various US sectors, we explore this relationship using parametric and non-parametric D-vine quantile regression models that exploits the dependence between covariates and allows sequential covariate selection. The results are compared against the classical linear quantile regression. We find a positive effect of the climatic variables on electricity consumption that is as heating and cooling degree days increase electricity demand rises in all sectors, and cooling need has a greater impact than heating need. Evidence suggests that residential and commercial electricity consumptions are affected the most, while industrial and transport sector consumptions are less sensitive. The D-vine quantile regression performs better than the linear quantile regression for almost all sectors.
期刊介绍:
12 issues per year
Abstracted and/or indexed in: Applied Science & Technology Index; API Abstracts/Literature; Automatic Subject Index Citation; BIOSIS Previews; Cabell’s Directory of Publishing Opportunities in Economics and Finance; Chemical Abstracts; CSA Aquatic Science & Fisheries Abstracts; CSA Environmental Sciences & Pollution Management Database; CSA Pollution Abstracts; Current Contents/Engineering, Technology & Applied Sciences; Directory of Industry Data Sources; Economic Abstracts; Electrical and Electronics Abstracts; Energy Information Abstracts; Energy Research Abstracts; Engineering Index Monthly; Environmental Abstracts; Environmental Periodicals Bibliography (EPB); International Abstracts in Operations Research; Operations/Research/Management Science Abstracts; Petroleum Abstracts; Physikalische Berichte; and Science Citation Index.
Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .