利用神经网络和综合地表数据库填补缺失和扩展重要波高测量

IF 1.3 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Damjan Bujak, Tonko Bogovac, D. Carevic, Hanna Miličević
{"title":"利用神经网络和综合地表数据库填补缺失和扩展重要波高测量","authors":"Damjan Bujak, Tonko Bogovac, D. Carevic, Hanna Miličević","doi":"10.3390/wind3020010","DOIUrl":null,"url":null,"abstract":"Wave data play a critical role in offshore structure design and coastal vulnerability studies. For various reasons, such as equipment malfunctions, wave data are often incomplete. Despite the interest in completing the data, few studies have considered constructing a machine learning model with publicly available wind measurements as input, while wind data from reanalysis models are commonly used. In this work, ANNs are constructed and tested to fill in missing wave data and extend the original wave measurements in a basin with limited fetch where wind waves dominate. Input features for the ANN are obtained from the publicly available Integrated Surface Database (ISD) maintained by NOAA. The accuracy of the ANNs is also compared to a state-of-the-art reanalysis wave model, MEDSEA, maintained at Copernicus Marine Service. The results of this study show that ANNs can accurately fill in missing wave data and also extend beyond the measurement period, using the wind velocity magnitude and wind direction from nearby weather stations. The MEDSEA reanalysis data showed greater scatter compared to the reconstructed significant wave heights from ANN. Specifically, MEDSEA showed a 22% higher HH index for expanding wave data and a 33% higher HH index for filling in missing wave data points.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filling Missing and Extending Significant Wave Height Measurements Using Neural Networks and an Integrated Surface Database\",\"authors\":\"Damjan Bujak, Tonko Bogovac, D. Carevic, Hanna Miličević\",\"doi\":\"10.3390/wind3020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wave data play a critical role in offshore structure design and coastal vulnerability studies. For various reasons, such as equipment malfunctions, wave data are often incomplete. Despite the interest in completing the data, few studies have considered constructing a machine learning model with publicly available wind measurements as input, while wind data from reanalysis models are commonly used. In this work, ANNs are constructed and tested to fill in missing wave data and extend the original wave measurements in a basin with limited fetch where wind waves dominate. Input features for the ANN are obtained from the publicly available Integrated Surface Database (ISD) maintained by NOAA. The accuracy of the ANNs is also compared to a state-of-the-art reanalysis wave model, MEDSEA, maintained at Copernicus Marine Service. The results of this study show that ANNs can accurately fill in missing wave data and also extend beyond the measurement period, using the wind velocity magnitude and wind direction from nearby weather stations. The MEDSEA reanalysis data showed greater scatter compared to the reconstructed significant wave heights from ANN. Specifically, MEDSEA showed a 22% higher HH index for expanding wave data and a 33% higher HH index for filling in missing wave data points.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind3020010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind3020010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

波浪数据在海上结构设计和海岸脆弱性研究中起着至关重要的作用。由于各种原因,如设备故障,波浪数据往往是不完整的。尽管有兴趣完成数据,但很少有研究考虑使用公开可用的风测量作为输入来构建机器学习模型,而通常使用来自再分析模型的风数据。在这项工作中,构建和测试了人工神经网络来填补缺失的波浪数据,并扩展了在风浪占主导地位的有限取水盆地中的原始波浪测量。人工神经网络的输入特征来自NOAA维护的公开的综合地表数据库(ISD)。人工神经网络的精度还与哥白尼海洋服务中心维护的最先进的再分析波浪模型MEDSEA进行了比较。研究结果表明,利用附近气象站的风速大小和风向,人工神经网络可以准确地填补缺失的波浪数据,并且可以扩展到测量周期之外。与人工神经网络重建的显著波高相比,MEDSEA再分析数据显示出更大的散射。具体而言,MEDSEA在扩展波数据时HH指数高出22%,在填充缺失波数据点时HH指数高出33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filling Missing and Extending Significant Wave Height Measurements Using Neural Networks and an Integrated Surface Database
Wave data play a critical role in offshore structure design and coastal vulnerability studies. For various reasons, such as equipment malfunctions, wave data are often incomplete. Despite the interest in completing the data, few studies have considered constructing a machine learning model with publicly available wind measurements as input, while wind data from reanalysis models are commonly used. In this work, ANNs are constructed and tested to fill in missing wave data and extend the original wave measurements in a basin with limited fetch where wind waves dominate. Input features for the ANN are obtained from the publicly available Integrated Surface Database (ISD) maintained by NOAA. The accuracy of the ANNs is also compared to a state-of-the-art reanalysis wave model, MEDSEA, maintained at Copernicus Marine Service. The results of this study show that ANNs can accurately fill in missing wave data and also extend beyond the measurement period, using the wind velocity magnitude and wind direction from nearby weather stations. The MEDSEA reanalysis data showed greater scatter compared to the reconstructed significant wave heights from ANN. Specifically, MEDSEA showed a 22% higher HH index for expanding wave data and a 33% higher HH index for filling in missing wave data points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind and Structures
Wind and Structures 工程技术-工程:土木
CiteScore
2.70
自引率
18.80%
发文量
0
审稿时长
>12 weeks
期刊介绍: The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted. The main theme of the Journal is the wind effects on structures. Areas covered by the journal include: Wind loads and structural response, Bluff-body aerodynamics, Computational method, Wind tunnel modeling, Local wind environment, Codes and regulations, Wind effects on large scale structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信