Ϣ-Semi-p开放集

Muna L. Abd Ul Ridha, S. G. Gasim
{"title":"Ϣ-Semi-p开放集","authors":"Muna L. Abd Ul Ridha, S. G. Gasim","doi":"10.30526/36.1.2969","DOIUrl":null,"url":null,"abstract":"Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function in a generalized topological space as -semi-p-continuous function and -semi-p-irresolute function. The relationship between them are showen. We prove that every -open ( -preopen) set is an -semi-p-open set, but not conversely. Every -semi-p-irresolute function is an -semi-p-continuous function, but not conversely. Also we show that the union of any family of -semi-p-open sets is an -semi-p-open set, but the intersection of two -semi-p-open sets need not to be an -semi-p-open set.","PeriodicalId":13022,"journal":{"name":"Ibn AL- Haitham Journal For Pure and Applied Sciences","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ϣ-Semi-p Open Set\",\"authors\":\"Muna L. Abd Ul Ridha, S. G. Gasim\",\"doi\":\"10.30526/36.1.2969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function in a generalized topological space as -semi-p-continuous function and -semi-p-irresolute function. The relationship between them are showen. We prove that every -open ( -preopen) set is an -semi-p-open set, but not conversely. Every -semi-p-irresolute function is an -semi-p-continuous function, but not conversely. Also we show that the union of any family of -semi-p-open sets is an -semi-p-open set, but the intersection of two -semi-p-open sets need not to be an -semi-p-open set.\",\"PeriodicalId\":13022,\"journal\":{\"name\":\"Ibn AL- Haitham Journal For Pure and Applied Sciences\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn AL- Haitham Journal For Pure and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/36.1.2969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn AL- Haitham Journal For Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/36.1.2969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Csaszar分别在2002年和2005年引入了广义拓扑空间的概念和广义拓扑空间中的一个新的开集-preopen。给出了-preinterior和-preclosuer的定义。相继出现了一些研究,给出了开集的许多推广。本文的目的是给出广义拓扑空间中开集的一种新的推广,称为-半p-开集。我们给出了这个集合的定义及其等价。给出了集合的-半p内和-半p闭的定义,并讨论了它们的性质。并讨论了-preinterior和- preclosurer的性质。此外,我们给出了广义拓扑空间中一类新的连续函数,即-半p-连续函数和-半p-不决函数。给出了它们之间的关系。证明了每一个-开(-预开)集都是-半p开集,但不是相反。每一个-半-p-不决函数都是-半-p-连续函数,但不是相反。我们还证明了任意一族-半p-开集的并集是-半p-开集,但两个-半p-开集的交不一定是-半p-开集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ϣ-Semi-p Open Set
Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function in a generalized topological space as -semi-p-continuous function and -semi-p-irresolute function. The relationship between them are showen. We prove that every -open ( -preopen) set is an -semi-p-open set, but not conversely. Every -semi-p-irresolute function is an -semi-p-continuous function, but not conversely. Also we show that the union of any family of -semi-p-open sets is an -semi-p-open set, but the intersection of two -semi-p-open sets need not to be an -semi-p-open set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
67
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信