大时滞奇摄动时滞微分方程的拟合参数指数样条法

IF 0.9 Q3 MATHEMATICS, APPLIED
E. Siva Prasad, R. Omkar, Kolloju Phaneendra
{"title":"大时滞奇摄动时滞微分方程的拟合参数指数样条法","authors":"E. Siva Prasad,&nbsp;R. Omkar,&nbsp;Kolloju Phaneendra","doi":"10.1155/2022/9291834","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we present a new computational method based on an exponential spline for solving a class of delay differential equations with a negative shift in the differentiated term. When the shift parameter is <i>O</i>(<i>ε</i>), the proposed method works well and also controls the oscillations in the solution’s layer region. To accomplish this, we included a parameter in the proposed numerical scheme that is based on a special type of mesh, and the parameter is evaluated using the theory of singular perturbation. Maximum absolute errors and convergences of numerical solutions are tabulated to demonstrate the efficiency of the proposed computational method and to support the convergence analysis of the presented scheme.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/9291834","citationCount":"0","resultStr":"{\"title\":\"Fitted Parameter Exponential Spline Method for Singularly Perturbed Delay Differential Equations with a Large Delay\",\"authors\":\"E. Siva Prasad,&nbsp;R. Omkar,&nbsp;Kolloju Phaneendra\",\"doi\":\"10.1155/2022/9291834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this paper, we present a new computational method based on an exponential spline for solving a class of delay differential equations with a negative shift in the differentiated term. When the shift parameter is <i>O</i>(<i>ε</i>), the proposed method works well and also controls the oscillations in the solution’s layer region. To accomplish this, we included a parameter in the proposed numerical scheme that is based on a special type of mesh, and the parameter is evaluated using the theory of singular perturbation. Maximum absolute errors and convergences of numerical solutions are tabulated to demonstrate the efficiency of the proposed computational method and to support the convergence analysis of the presented scheme.</p>\\n </div>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/9291834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2022/9291834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/9291834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种新的基于指数样条的计算方法,用于求解一类微分项为负移的时滞微分方程。当位移参数为0 ε时,该方法能很好地控制溶液层域的振荡。为了实现这一点,我们在提出的数值方案中加入了一个基于特殊类型网格的参数,并使用奇异摄动理论对该参数进行了评估。数值解的最大绝对误差和收敛性被制表,以证明所提出的计算方法的有效性,并支持所提出方案的收敛性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fitted Parameter Exponential Spline Method for Singularly Perturbed Delay Differential Equations with a Large Delay

Fitted Parameter Exponential Spline Method for Singularly Perturbed Delay Differential Equations with a Large Delay

In this paper, we present a new computational method based on an exponential spline for solving a class of delay differential equations with a negative shift in the differentiated term. When the shift parameter is O(ε), the proposed method works well and also controls the oscillations in the solution’s layer region. To accomplish this, we included a parameter in the proposed numerical scheme that is based on a special type of mesh, and the parameter is evaluated using the theory of singular perturbation. Maximum absolute errors and convergences of numerical solutions are tabulated to demonstrate the efficiency of the proposed computational method and to support the convergence analysis of the presented scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信