稀疏表示的Fisher判别字典学习

Meng Yang, Lei Zhang, Xiangchu Feng, D. Zhang
{"title":"稀疏表示的Fisher判别字典学习","authors":"Meng Yang, Lei Zhang, Xiangchu Feng, D. Zhang","doi":"10.1109/ICCV.2011.6126286","DOIUrl":null,"url":null,"abstract":"Sparse representation based classification has led to interesting image recognition results, while the dictionary used for sparse coding plays a key role in it. This paper presents a novel dictionary learning (DL) method to improve the pattern classification performance. Based on the Fisher discrimination criterion, a structured dictionary, whose dictionary atoms have correspondence to the class labels, is learned so that the reconstruction error after sparse coding can be used for pattern classification. Meanwhile, the Fisher discrimination criterion is imposed on the coding coefficients so that they have small within-class scatter but big between-class scatter. A new classification scheme associated with the proposed Fisher discrimination DL (FDDL) method is then presented by using both the discriminative information in the reconstruction error and sparse coding coefficients. The proposed FDDL is extensively evaluated on benchmark image databases in comparison with existing sparse representation and DL based classification methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"21 1","pages":"543-550"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"972","resultStr":"{\"title\":\"Fisher Discrimination Dictionary Learning for sparse representation\",\"authors\":\"Meng Yang, Lei Zhang, Xiangchu Feng, D. Zhang\",\"doi\":\"10.1109/ICCV.2011.6126286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse representation based classification has led to interesting image recognition results, while the dictionary used for sparse coding plays a key role in it. This paper presents a novel dictionary learning (DL) method to improve the pattern classification performance. Based on the Fisher discrimination criterion, a structured dictionary, whose dictionary atoms have correspondence to the class labels, is learned so that the reconstruction error after sparse coding can be used for pattern classification. Meanwhile, the Fisher discrimination criterion is imposed on the coding coefficients so that they have small within-class scatter but big between-class scatter. A new classification scheme associated with the proposed Fisher discrimination DL (FDDL) method is then presented by using both the discriminative information in the reconstruction error and sparse coding coefficients. The proposed FDDL is extensively evaluated on benchmark image databases in comparison with existing sparse representation and DL based classification methods.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"21 1\",\"pages\":\"543-550\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"972\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 972

摘要

基于稀疏表示的分类导致了有趣的图像识别结果,而用于稀疏编码的字典在其中起着关键作用。本文提出了一种新的字典学习方法来提高模式分类性能。基于Fisher判别准则,学习到一个字典原子与类标签对应的结构化字典,利用稀疏编码后的重构误差进行模式分类。同时,对编码系数施加Fisher判别准则,使编码系数类内散点小,类间散点大。然后利用重构误差中的判别信息和稀疏编码系数,提出了一种与Fisher判别DL (FDDL)方法相关联的分类方案。与现有的稀疏表示和基于深度学习的分类方法相比,本文提出的FDDL在基准图像数据库上进行了广泛的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fisher Discrimination Dictionary Learning for sparse representation
Sparse representation based classification has led to interesting image recognition results, while the dictionary used for sparse coding plays a key role in it. This paper presents a novel dictionary learning (DL) method to improve the pattern classification performance. Based on the Fisher discrimination criterion, a structured dictionary, whose dictionary atoms have correspondence to the class labels, is learned so that the reconstruction error after sparse coding can be used for pattern classification. Meanwhile, the Fisher discrimination criterion is imposed on the coding coefficients so that they have small within-class scatter but big between-class scatter. A new classification scheme associated with the proposed Fisher discrimination DL (FDDL) method is then presented by using both the discriminative information in the reconstruction error and sparse coding coefficients. The proposed FDDL is extensively evaluated on benchmark image databases in comparison with existing sparse representation and DL based classification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信