寻找有限群的最小生成集的算法。

Tanakorn Udomworarat, T. Suksumran
{"title":"寻找有限群的最小生成集的算法。","authors":"Tanakorn Udomworarat, T. Suksumran","doi":"10.29252/AS.2021.2029","DOIUrl":null,"url":null,"abstract":"In this article, we study connections between components of the Cayley graph $\\mathrm{Cay}(G,A)$, where $A$ is an arbitrary subset of a group $G$, and cosets of the subgroup of $G$ generated by $A$. In particular, we show how to construct generating sets of $G$ if $\\mathrm{Cay}(G,A)$ has finitely many components. Furthermore, we provide an algorithm for finding minimal generating sets of finite groups using their Cayley graphs.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algorithm for finding minimal generating sets of finite groups.\",\"authors\":\"Tanakorn Udomworarat, T. Suksumran\",\"doi\":\"10.29252/AS.2021.2029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study connections between components of the Cayley graph $\\\\mathrm{Cay}(G,A)$, where $A$ is an arbitrary subset of a group $G$, and cosets of the subgroup of $G$ generated by $A$. In particular, we show how to construct generating sets of $G$ if $\\\\mathrm{Cay}(G,A)$ has finitely many components. Furthermore, we provide an algorithm for finding minimal generating sets of finite groups using their Cayley graphs.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/AS.2021.2029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/AS.2021.2029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Cayley图$\ mathm {Cay}(G,A)$中$A$是群$G$的任意子集,以及由$A$生成的子群$G$的余集之间的联系。特别地,我们展示了如果$\ mathm {Cay}(G,A)$有有限多个组件,我们如何构造$G$的生成集。此外,我们还提供了一种利用有限群的Cayley图寻找最小生成集的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for finding minimal generating sets of finite groups.
In this article, we study connections between components of the Cayley graph $\mathrm{Cay}(G,A)$, where $A$ is an arbitrary subset of a group $G$, and cosets of the subgroup of $G$ generated by $A$. In particular, we show how to construct generating sets of $G$ if $\mathrm{Cay}(G,A)$ has finitely many components. Furthermore, we provide an algorithm for finding minimal generating sets of finite groups using their Cayley graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信