根据三次电流和电位分布研究了经典的埃文斯滴腐蚀实验

Abraham Sainz-Rosales, Xóchitl Ocampo-Lazcarro, Azalia Hernández-Pérez, A. G. González-Gutiérrez, E. R. Larios-Durán, C. Ponce de León, F. Walsh, M. Bárcena-Soto, N. Casillas
{"title":"根据三次电流和电位分布研究了经典的埃文斯滴腐蚀实验","authors":"Abraham Sainz-Rosales, Xóchitl Ocampo-Lazcarro, Azalia Hernández-Pérez, A. G. González-Gutiérrez, E. R. Larios-Durán, C. Ponce de León, F. Walsh, M. Bárcena-Soto, N. Casillas","doi":"10.3390/cmd3020016","DOIUrl":null,"url":null,"abstract":"Background: Evans’s drop is a classic corrosion experiment that is nearly 100 years old, and it is analogous to other corrosion systems promoted by O2 gradients. The availability of more robust finite element software packages opens the possibility to reach a deeper understanding of these kind of corrosion systems. Methodology: In order to solve the problem, the model includes the governing mass transport diffusion and migration equation and the material balance in a nonsteady state by the finite element method. This is performed using COMSOL Multiphysics to predict the tertiary current and potential distribution considering the geometry, reaction kinetics, and mass transport for each ionic species. Significant Findings: A simulation of the tertiary current and potential distribution of the Evans’s drop corrosion experiment on an iron surface is presented. An oxygen concentration difference of 0.18 mol m−3 between the center and the drop periphery sets up a potential difference of 60 mV which acts as a corrosion driving force. Reaction kinetics are described by Tafel equations. Results include the evolution of concentration profiles for OH−, Fe2+, Fe3+, Fe(OH)2, and Fe(OH)3.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classic Evans’s Drop Corrosion Experiment Investigated in Terms of a Tertiary Current and Potential Distribution\",\"authors\":\"Abraham Sainz-Rosales, Xóchitl Ocampo-Lazcarro, Azalia Hernández-Pérez, A. G. González-Gutiérrez, E. R. Larios-Durán, C. Ponce de León, F. Walsh, M. Bárcena-Soto, N. Casillas\",\"doi\":\"10.3390/cmd3020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Evans’s drop is a classic corrosion experiment that is nearly 100 years old, and it is analogous to other corrosion systems promoted by O2 gradients. The availability of more robust finite element software packages opens the possibility to reach a deeper understanding of these kind of corrosion systems. Methodology: In order to solve the problem, the model includes the governing mass transport diffusion and migration equation and the material balance in a nonsteady state by the finite element method. This is performed using COMSOL Multiphysics to predict the tertiary current and potential distribution considering the geometry, reaction kinetics, and mass transport for each ionic species. Significant Findings: A simulation of the tertiary current and potential distribution of the Evans’s drop corrosion experiment on an iron surface is presented. An oxygen concentration difference of 0.18 mol m−3 between the center and the drop periphery sets up a potential difference of 60 mV which acts as a corrosion driving force. Reaction kinetics are described by Tafel equations. Results include the evolution of concentration profiles for OH−, Fe2+, Fe3+, Fe(OH)2, and Fe(OH)3.\",\"PeriodicalId\":10693,\"journal\":{\"name\":\"Corrosion and Materials Degradation\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion and Materials Degradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmd3020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd3020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

背景:Evans’s drop是一个经典的腐蚀实验,已有近100年的历史,它与其他由O2梯度促进的腐蚀体系类似。更强大的有限元软件包的可用性为深入了解这类腐蚀系统提供了可能。方法:为求解该问题,采用有限元法将控制质量输运、扩散和迁移方程和非稳态物质平衡纳入模型。这是使用COMSOL Multiphysics来预测三级电流和电位分布,考虑到几何形状、反应动力学和每种离子的质量传递。重要发现:模拟了铁表面埃文斯滴腐蚀实验的三次电流和电位分布。液滴中心与液滴外围的氧浓度差为0.18 mol m−3,形成60 mV的电位差,成为腐蚀驱动力。反应动力学用塔菲尔方程描述。结果包括OH−、Fe2+、Fe3+、Fe(OH)2和Fe(OH)3的浓度分布演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classic Evans’s Drop Corrosion Experiment Investigated in Terms of a Tertiary Current and Potential Distribution
Background: Evans’s drop is a classic corrosion experiment that is nearly 100 years old, and it is analogous to other corrosion systems promoted by O2 gradients. The availability of more robust finite element software packages opens the possibility to reach a deeper understanding of these kind of corrosion systems. Methodology: In order to solve the problem, the model includes the governing mass transport diffusion and migration equation and the material balance in a nonsteady state by the finite element method. This is performed using COMSOL Multiphysics to predict the tertiary current and potential distribution considering the geometry, reaction kinetics, and mass transport for each ionic species. Significant Findings: A simulation of the tertiary current and potential distribution of the Evans’s drop corrosion experiment on an iron surface is presented. An oxygen concentration difference of 0.18 mol m−3 between the center and the drop periphery sets up a potential difference of 60 mV which acts as a corrosion driving force. Reaction kinetics are described by Tafel equations. Results include the evolution of concentration profiles for OH−, Fe2+, Fe3+, Fe(OH)2, and Fe(OH)3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信