机械生物学的可编程材料

Yong Wang
{"title":"机械生物学的可编程材料","authors":"Yong Wang","doi":"10.4172/1662-100X.S1.001","DOIUrl":null,"url":null,"abstract":"A two-dimensional anatomically based mathematical model of the human knee joint was developed to understand its biomechanics in deep flexion. The model was used to determine the internal knee loads as it simulates isometric quadriceps and hamstring co-contractions at different flexion angles during deep squat. It was found that in order to achieve deep flexion, large muscle forces are required, resulting in large tibio-femoral contact forces. In deep flexion, the femoral contact point was located on the most proximal point of the posterior condyle, location which was not affected by the level of quad activation. Conversely, the location of the tibial contact point was highly affected by the level of quad activation. Both anterior and posterior fiber bundles of the posterior cruciate ligament were found to carry high loads when the knee is maximally flexed. These results point to the important role of the posterior cruciate ligament in this position, and suggest the necessity of retaining this ligament during total knee replacement (TKR) procedures that allows for maximum flexion angles. Furthermore, the present data provide an explanation why most TKR's do not allow deep flexion: while contact occurs on the most proximal points of the posterior condyles in normal knees, this portion of the condyles is not presently resurfaced when performing a TKR.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Programmable materials for mechanobiology\",\"authors\":\"Yong Wang\",\"doi\":\"10.4172/1662-100X.S1.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-dimensional anatomically based mathematical model of the human knee joint was developed to understand its biomechanics in deep flexion. The model was used to determine the internal knee loads as it simulates isometric quadriceps and hamstring co-contractions at different flexion angles during deep squat. It was found that in order to achieve deep flexion, large muscle forces are required, resulting in large tibio-femoral contact forces. In deep flexion, the femoral contact point was located on the most proximal point of the posterior condyle, location which was not affected by the level of quad activation. Conversely, the location of the tibial contact point was highly affected by the level of quad activation. Both anterior and posterior fiber bundles of the posterior cruciate ligament were found to carry high loads when the knee is maximally flexed. These results point to the important role of the posterior cruciate ligament in this position, and suggest the necessity of retaining this ligament during total knee replacement (TKR) procedures that allows for maximum flexion angles. Furthermore, the present data provide an explanation why most TKR's do not allow deep flexion: while contact occurs on the most proximal points of the posterior condyles in normal knees, this portion of the condyles is not presently resurfaced when performing a TKR.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/1662-100X.S1.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/1662-100X.S1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Programmable materials for mechanobiology
A two-dimensional anatomically based mathematical model of the human knee joint was developed to understand its biomechanics in deep flexion. The model was used to determine the internal knee loads as it simulates isometric quadriceps and hamstring co-contractions at different flexion angles during deep squat. It was found that in order to achieve deep flexion, large muscle forces are required, resulting in large tibio-femoral contact forces. In deep flexion, the femoral contact point was located on the most proximal point of the posterior condyle, location which was not affected by the level of quad activation. Conversely, the location of the tibial contact point was highly affected by the level of quad activation. Both anterior and posterior fiber bundles of the posterior cruciate ligament were found to carry high loads when the knee is maximally flexed. These results point to the important role of the posterior cruciate ligament in this position, and suggest the necessity of retaining this ligament during total knee replacement (TKR) procedures that allows for maximum flexion angles. Furthermore, the present data provide an explanation why most TKR's do not allow deep flexion: while contact occurs on the most proximal points of the posterior condyles in normal knees, this portion of the condyles is not presently resurfaced when performing a TKR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信