对K\ ahler-Einstein度量和随机点过程的邀请

R. Berman
{"title":"对K\\ ahler-Einstein度量和随机点过程的邀请","authors":"R. Berman","doi":"10.4310/sdg.2018.v23.n1.a2","DOIUrl":null,"url":null,"abstract":"This is an invitation to the probabilistic approach for constructing Kahler-Einstein metrics on complex projective algebraic manifolds X. The metrics in question emerge in the large N-limit from a canonical way of sampling N points on X, i.e. from random point processes on X, defined in terms of algebro-geometric data. The proof of the convergence towards Kahler-Einstein metrics with negative Ricci curvature is explained. In the case of positive Ricci curvature a variational approach is introduced to prove the conjectural convergence, which can be viewed as a probabilistic constructive analog of the Yau-Tian-Donaldson conjecture. The variational approach reveals, in particular, that the convergence holds under the hypothesis that there is no phase transition, which - from the algebro-geometric point of view - amounts to an analytic property of a certain Archimedean zeta function.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An invitation to K\\\\\\\"ahler-Einstein metrics and random point processes\",\"authors\":\"R. Berman\",\"doi\":\"10.4310/sdg.2018.v23.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is an invitation to the probabilistic approach for constructing Kahler-Einstein metrics on complex projective algebraic manifolds X. The metrics in question emerge in the large N-limit from a canonical way of sampling N points on X, i.e. from random point processes on X, defined in terms of algebro-geometric data. The proof of the convergence towards Kahler-Einstein metrics with negative Ricci curvature is explained. In the case of positive Ricci curvature a variational approach is introduced to prove the conjectural convergence, which can be viewed as a probabilistic constructive analog of the Yau-Tian-Donaldson conjecture. The variational approach reveals, in particular, that the convergence holds under the hypothesis that there is no phase transition, which - from the algebro-geometric point of view - amounts to an analytic property of a certain Archimedean zeta function.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/sdg.2018.v23.n1.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/sdg.2018.v23.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

这是对在复杂射影代数流形X上构造Kahler-Einstein度量的概率方法的邀请。所讨论的度量出现在大N极限中,来自对X上N个点采样的规范方法,即来自X上的随机点过程,用代数几何数据定义。解释了负里奇曲率的卡勒-爱因斯坦度量收敛性的证明。在正Ricci曲率的情况下,引入了一种变分方法来证明猜想的收敛性,这可以看作是you - tian - donaldson猜想的概率构造类比。变分方法特别表明,在没有相变的假设下,收敛性是成立的,从代数几何的角度来看,这相当于某个阿基米德ζ函数的解析性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An invitation to K\"ahler-Einstein metrics and random point processes
This is an invitation to the probabilistic approach for constructing Kahler-Einstein metrics on complex projective algebraic manifolds X. The metrics in question emerge in the large N-limit from a canonical way of sampling N points on X, i.e. from random point processes on X, defined in terms of algebro-geometric data. The proof of the convergence towards Kahler-Einstein metrics with negative Ricci curvature is explained. In the case of positive Ricci curvature a variational approach is introduced to prove the conjectural convergence, which can be viewed as a probabilistic constructive analog of the Yau-Tian-Donaldson conjecture. The variational approach reveals, in particular, that the convergence holds under the hypothesis that there is no phase transition, which - from the algebro-geometric point of view - amounts to an analytic property of a certain Archimedean zeta function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信