一种用于图像去噪的分数阶各向异性快速显式扩散算法

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Zhiguang Zhang, Qiang Liu, Tianling Gao
{"title":"一种用于图像去噪的分数阶各向异性快速显式扩散算法","authors":"Zhiguang Zhang, Qiang Liu, Tianling Gao","doi":"10.3934/IPI.2021018","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly show a novel fast fractional order anisotropic diffusion algorithm for noise removal based on the recent numerical scheme called the Fast Explicit Diffusion. To balance the efficiency and accuracy of the algorithm, the truncated matrix method is used to deal with the iterative matrix in the model and its error is also estimated. In particular, we obtain the stability condition of the iteration by the spectrum analysis method. Through implementing the fast explicit format iteration algorithm with periodic change of time step size, the efficiency of the algorithm is greatly improved. At last, we show some numerical results on denoising tasks. Many experimental results confirm that the algorithm can more quickly achieve satisfactory denoising results.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising\",\"authors\":\"Zhiguang Zhang, Qiang Liu, Tianling Gao\",\"doi\":\"10.3934/IPI.2021018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly show a novel fast fractional order anisotropic diffusion algorithm for noise removal based on the recent numerical scheme called the Fast Explicit Diffusion. To balance the efficiency and accuracy of the algorithm, the truncated matrix method is used to deal with the iterative matrix in the model and its error is also estimated. In particular, we obtain the stability condition of the iteration by the spectrum analysis method. Through implementing the fast explicit format iteration algorithm with periodic change of time step size, the efficiency of the algorithm is greatly improved. At last, we show some numerical results on denoising tasks. Many experimental results confirm that the algorithm can more quickly achieve satisfactory denoising results.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/IPI.2021018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文主要在快速显式扩散的基础上,提出了一种新的快速分数阶各向异性扩散去噪算法。为了平衡算法的效率和准确性,采用截断矩阵法处理模型中的迭代矩阵,并对其误差进行了估计。特别地,我们用谱分析法得到了迭代的稳定性条件。通过实现时间步长周期性变化的快速显式格式迭代算法,大大提高了算法的效率。最后给出了去噪任务的一些数值结果。大量实验结果表明,该算法能够更快地获得满意的去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising
In this paper, we mainly show a novel fast fractional order anisotropic diffusion algorithm for noise removal based on the recent numerical scheme called the Fast Explicit Diffusion. To balance the efficiency and accuracy of the algorithm, the truncated matrix method is used to deal with the iterative matrix in the model and its error is also estimated. In particular, we obtain the stability condition of the iteration by the spectrum analysis method. Through implementing the fast explicit format iteration algorithm with periodic change of time step size, the efficiency of the algorithm is greatly improved. At last, we show some numerical results on denoising tasks. Many experimental results confirm that the algorithm can more quickly achieve satisfactory denoising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信