{"title":"无约束优化的全局收敛块坐标技术","authors":"Luigi Grippof, M. Sciandrone","doi":"10.1080/10556789908805730","DOIUrl":null,"url":null,"abstract":"In this paper we define new classes of globally convergent block-coordinate techniques for the unconstrained minimization of a continuously differentiable function. More specifically, we first describe conceptual models of decomposition algorithms based on the interconnection of elementary operations performed on the block components of the variable vector. Then we characterize the elementary operations defined through a suitable line search or the global minimization in a component subspace. Using these models, we establish new results on the convergence of the nonlinear Gauss–Seidel method and we prove that this method with a two-block decomposition is globally convergent towards stationary points, even in the absence of convexity or uniqueness assumptions. In the general case of nonconvex objective function and arbitrary decomposition we define new globally convergent line-search-based schemes that may also include partial global inimizations with respect to some component. Computational aspects are di...","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"86 1","pages":"587-637"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":"{\"title\":\"Globally convergent block-coordinate techniques for unconstrained optimization\",\"authors\":\"Luigi Grippof, M. Sciandrone\",\"doi\":\"10.1080/10556789908805730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define new classes of globally convergent block-coordinate techniques for the unconstrained minimization of a continuously differentiable function. More specifically, we first describe conceptual models of decomposition algorithms based on the interconnection of elementary operations performed on the block components of the variable vector. Then we characterize the elementary operations defined through a suitable line search or the global minimization in a component subspace. Using these models, we establish new results on the convergence of the nonlinear Gauss–Seidel method and we prove that this method with a two-block decomposition is globally convergent towards stationary points, even in the absence of convexity or uniqueness assumptions. In the general case of nonconvex objective function and arbitrary decomposition we define new globally convergent line-search-based schemes that may also include partial global inimizations with respect to some component. Computational aspects are di...\",\"PeriodicalId\":54673,\"journal\":{\"name\":\"Optimization Methods & Software\",\"volume\":\"86 1\",\"pages\":\"587-637\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods & Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10556789908805730\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805730","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Globally convergent block-coordinate techniques for unconstrained optimization
In this paper we define new classes of globally convergent block-coordinate techniques for the unconstrained minimization of a continuously differentiable function. More specifically, we first describe conceptual models of decomposition algorithms based on the interconnection of elementary operations performed on the block components of the variable vector. Then we characterize the elementary operations defined through a suitable line search or the global minimization in a component subspace. Using these models, we establish new results on the convergence of the nonlinear Gauss–Seidel method and we prove that this method with a two-block decomposition is globally convergent towards stationary points, even in the absence of convexity or uniqueness assumptions. In the general case of nonconvex objective function and arbitrary decomposition we define new globally convergent line-search-based schemes that may also include partial global inimizations with respect to some component. Computational aspects are di...
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.