利用Swift信用证数据改进COVID-19大流行期间的世界贸易短期预测

Benjamin Carton, Nan Hu, Joannes Mongardini, Kei Moriya, Aneta Radzikowski
{"title":"利用Swift信用证数据改进COVID-19大流行期间的世界贸易短期预测","authors":"Benjamin Carton, Nan Hu, Joannes Mongardini, Kei Moriya, Aneta Radzikowski","doi":"10.5089/9781513561196.001","DOIUrl":null,"url":null,"abstract":"An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers’ Index (PMI), to improve the short-term forecast of international trade. A horse race between linear regressions and machine-learning algorithms for the world and 40 large economies shows that forecasts based on linear regressions often outperform those based on machine-learning algorithms, confirming the linear relationship between trade and its financing through letters of credit.","PeriodicalId":14326,"journal":{"name":"International Monetary Fund (IMF) Research Paper Series","volume":"C-19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the Short-Term Forecast of World Trade During the COVID-19 Pandemic Using Swift Data on Letters of Credit\",\"authors\":\"Benjamin Carton, Nan Hu, Joannes Mongardini, Kei Moriya, Aneta Radzikowski\",\"doi\":\"10.5089/9781513561196.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers’ Index (PMI), to improve the short-term forecast of international trade. A horse race between linear regressions and machine-learning algorithms for the world and 40 large economies shows that forecasts based on linear regressions often outperform those based on machine-learning algorithms, confirming the linear relationship between trade and its financing through letters of credit.\",\"PeriodicalId\":14326,\"journal\":{\"name\":\"International Monetary Fund (IMF) Research Paper Series\",\"volume\":\"C-19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Monetary Fund (IMF) Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5089/9781513561196.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Monetary Fund (IMF) Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5089/9781513561196.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基金组织工作的一项基本内容是监测和预测国际贸易。本文利用信用证上的SWIFT电文,结合原油价格和制造业新出口订单采购经理指数(PMI),改进对国际贸易的短期预测。线性回归和机器学习算法在全球和40个大型经济体之间的竞赛表明,基于线性回归的预测往往优于基于机器学习算法的预测,这证实了贸易与其通过信用证融资之间的线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Short-Term Forecast of World Trade During the COVID-19 Pandemic Using Swift Data on Letters of Credit
An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers’ Index (PMI), to improve the short-term forecast of international trade. A horse race between linear regressions and machine-learning algorithms for the world and 40 large economies shows that forecasts based on linear regressions often outperform those based on machine-learning algorithms, confirming the linear relationship between trade and its financing through letters of credit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信