具有消失电导的高尔顿-沃森树的随机漫步速度

Tabea Glatzel, J. Nagel
{"title":"具有消失电导的高尔顿-沃森树的随机漫步速度","authors":"Tabea Glatzel, J. Nagel","doi":"10.1214/21-ejp645","DOIUrl":null,"url":null,"abstract":"In this paper we consider random walks on Galton-Watson trees with random conductances. On these trees, the distance of the walker to the root satisfies a law of large numbers with limit the effective velocity, or speed of the walk. We study the regularity of the speed as a function of the distribution of conductances, in particular when the distribution of conductances converges to a non-elliptic limit.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The speed of random walk on Galton-Watson trees with vanishing conductances\",\"authors\":\"Tabea Glatzel, J. Nagel\",\"doi\":\"10.1214/21-ejp645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider random walks on Galton-Watson trees with random conductances. On these trees, the distance of the walker to the root satisfies a law of large numbers with limit the effective velocity, or speed of the walk. We study the regularity of the speed as a function of the distribution of conductances, in particular when the distribution of conductances converges to a non-elliptic limit.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ejp645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ejp645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑具有随机电导的高尔顿-沃森树上的随机漫步。在这些树上,步行者到根的距离满足大数定律,限制了有效速度或步行速度。我们研究了速度作为电导分布的函数的规律性,特别是当电导分布收敛到一个非椭圆极限时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The speed of random walk on Galton-Watson trees with vanishing conductances
In this paper we consider random walks on Galton-Watson trees with random conductances. On these trees, the distance of the walker to the root satisfies a law of large numbers with limit the effective velocity, or speed of the walk. We study the regularity of the speed as a function of the distribution of conductances, in particular when the distribution of conductances converges to a non-elliptic limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信