基于折射率的太赫兹血液成分检测微结构传感器

Md. Ahasan Habib
{"title":"基于折射率的太赫兹血液成分检测微结构传感器","authors":"Md. Ahasan Habib","doi":"10.1166/sl.2020.4186","DOIUrl":null,"url":null,"abstract":"In this article, a hexagonal packing photonic crystal fiber based optical sensor is presented and analyzed for different blood components identification using terahertz (THz) signal. The numerical analysis of the proposed sensor is performed by using finite element method based software Comsol V5.0. The proposed fiber is investigated in terahertz frequency spectrum from 1.3 THz to 2.5 THz for higher relative sensitivity and numerical aperture as well as lower absorption loss and confinement loss for better sensing applications. The reported hollow core fiber provide better interaction of light and the analytes, so that high relative sensitivity of 83.45%, 81.20%, 80.78%, 79.60% and 78.80% are obtained for RBCs, Hemoglobin, WBCs, Plasma and Water respectively at a particular geometric condition. Moreover, very low confinement loss and absorption loss with high numerical aperture is offered by the proposed sensor in terahertz spectrum. This optical sensor may be an alternative option to detect blood components present in the blood in a very efficient manner.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"17 1","pages":"74-82"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Refractive Index Based Micro-Structured Sensor for Blood Components Detection in Terahertz Regime\",\"authors\":\"Md. Ahasan Habib\",\"doi\":\"10.1166/sl.2020.4186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a hexagonal packing photonic crystal fiber based optical sensor is presented and analyzed for different blood components identification using terahertz (THz) signal. The numerical analysis of the proposed sensor is performed by using finite element method based software Comsol V5.0. The proposed fiber is investigated in terahertz frequency spectrum from 1.3 THz to 2.5 THz for higher relative sensitivity and numerical aperture as well as lower absorption loss and confinement loss for better sensing applications. The reported hollow core fiber provide better interaction of light and the analytes, so that high relative sensitivity of 83.45%, 81.20%, 80.78%, 79.60% and 78.80% are obtained for RBCs, Hemoglobin, WBCs, Plasma and Water respectively at a particular geometric condition. Moreover, very low confinement loss and absorption loss with high numerical aperture is offered by the proposed sensor in terahertz spectrum. This optical sensor may be an alternative option to detect blood components present in the blood in a very efficient manner.\",\"PeriodicalId\":21781,\"journal\":{\"name\":\"Sensor Letters\",\"volume\":\"17 1\",\"pages\":\"74-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/sl.2020.4186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出并分析了一种基于六方填料光子晶体光纤的光传感器,利用太赫兹(THz)信号对不同血液成分进行识别。采用基于Comsol V5.0的有限元软件对所设计的传感器进行了数值分析。该光纤在1.3太赫兹到2.5太赫兹的太赫兹频谱范围内进行了研究,以获得更高的相对灵敏度和数值孔径,以及更低的吸收损耗和约束损耗,从而获得更好的传感应用。所报道的空心芯光纤提供了更好的光与被分析物的相互作用,因此在特定几何条件下,对红细胞、血红蛋白、白细胞、血浆和水分别获得了83.45%、81.20%、80.78%、79.60%和78.80%的相对灵敏度。此外,该传感器在太赫兹频谱上具有非常低的约束损耗和高数值孔径的吸收损耗。这种光学传感器可能以一种非常有效的方式检测血液中存在的血液成分的替代选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Refractive Index Based Micro-Structured Sensor for Blood Components Detection in Terahertz Regime
In this article, a hexagonal packing photonic crystal fiber based optical sensor is presented and analyzed for different blood components identification using terahertz (THz) signal. The numerical analysis of the proposed sensor is performed by using finite element method based software Comsol V5.0. The proposed fiber is investigated in terahertz frequency spectrum from 1.3 THz to 2.5 THz for higher relative sensitivity and numerical aperture as well as lower absorption loss and confinement loss for better sensing applications. The reported hollow core fiber provide better interaction of light and the analytes, so that high relative sensitivity of 83.45%, 81.20%, 80.78%, 79.60% and 78.80% are obtained for RBCs, Hemoglobin, WBCs, Plasma and Water respectively at a particular geometric condition. Moreover, very low confinement loss and absorption loss with high numerical aperture is offered by the proposed sensor in terahertz spectrum. This optical sensor may be an alternative option to detect blood components present in the blood in a very efficient manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensor Letters
Sensor Letters 工程技术-电化学
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信