{"title":"无监督图像分割的直方图聚类","authors":"J. Puzicha, J. Buhmann, Thomas Hofmann","doi":"10.1109/CVPR.1999.784981","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel statistical mixture model for probabilistic grouping of distributional (histogram) data. Adopting the Bayesian framework, we propose to perform annealed maximum a posteriori estimation to compute optimal clustering solutions. In order to accelerate the optimization process, an efficient multiscale formulation is developed. We present a prototypical application of this method for the unsupervised segmentation of textured images based on local distributions of Gabor coefficients. Benchmark results indicate superior performance compared to K-means clustering and proximity-based algorithms.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"22 1","pages":"602-608 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Histogram clustering for unsupervised image segmentation\",\"authors\":\"J. Puzicha, J. Buhmann, Thomas Hofmann\",\"doi\":\"10.1109/CVPR.1999.784981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel statistical mixture model for probabilistic grouping of distributional (histogram) data. Adopting the Bayesian framework, we propose to perform annealed maximum a posteriori estimation to compute optimal clustering solutions. In order to accelerate the optimization process, an efficient multiscale formulation is developed. We present a prototypical application of this method for the unsupervised segmentation of textured images based on local distributions of Gabor coefficients. Benchmark results indicate superior performance compared to K-means clustering and proximity-based algorithms.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"22 1\",\"pages\":\"602-608 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Histogram clustering for unsupervised image segmentation
This paper introduces a novel statistical mixture model for probabilistic grouping of distributional (histogram) data. Adopting the Bayesian framework, we propose to perform annealed maximum a posteriori estimation to compute optimal clustering solutions. In order to accelerate the optimization process, an efficient multiscale formulation is developed. We present a prototypical application of this method for the unsupervised segmentation of textured images based on local distributions of Gabor coefficients. Benchmark results indicate superior performance compared to K-means clustering and proximity-based algorithms.