伪随机子集衍生序列的平衡与模式分布

Huaning Liu, Arne Winterhof
{"title":"伪随机子集衍生序列的平衡与模式分布","authors":"Huaning Liu, Arne Winterhof","doi":"10.2478/udt-2021-0009","DOIUrl":null,"url":null,"abstract":"Abstract Let q be a positive integer and 𝒮={x0,x1,⋯,xT−1}⊆ℤq={0,1,…,q−1} {\\scr S} = \\{{x_0},{x_1}, \\cdots ,{x_{T - 1}}\\}\\subseteq {{\\rm{\\mathbb Z}}_q} = \\{0,1, \\ldots ,q - 1\\} with 0≤x0<x1<⋯<xT−1≤q−1. 0 \\le {x_0} < {x_1} <\\cdots< {x_{T - 1}} \\le q - 1. . We derive from S three (finite) sequences: (1) For an integer M ≥ 2let (sn)be the M-ary sequence defined by sn ≡ xn+1 − xn mod M, n =0, 1,...,T − 2. (2) For an integer m ≥ 2let (tn) be the binary sequence defined by sn≡xn+1−xn mod M,n=0,1,⋯,T−2. \\matrix{{{s_n} \\equiv {x_{n + 1}} - {x_n}\\,\\bmod \\,M,} & {n = 0,1, \\cdots ,T - 2.}\\cr} n =0, 1,...,T − 2. (3) Let (un) be the characteristic sequence of S, tn={1if 1≤xn+1−xn≤m−1,0,otherwise,n=0,1,…,T−2. \\matrix{{{t_n} = \\left\\{{\\matrix{1 \\hfill & {{\\rm{if}}\\,1 \\le {x_{n + 1}} - {x_n} \\le m - 1,} \\hfill\\cr{0,} \\hfill & {{\\rm{otherwise}},} \\hfill\\cr}} \\right.} & {n = 0,1, \\ldots ,T - 2.}\\cr} n =0, 1,...,q − 1. We study the balance and pattern distribution of the sequences (sn), (tn)and (un). For sets S with desirable pseudorandom properties, more precisely, sets with low correlation measures, we show the following: (1) The sequence (sn) is (asymptotically) balanced and has uniform pattern distribution if T is of smaller order of magnitude than q. (2) The sequence (tn) is balanced and has uniform pattern distribution if T is approximately un={1if n∈𝒮,0,otherwise,n=0,1,…,q−1. \\matrix{{{u_n} = \\left\\{{\\matrix{1 \\hfill & {{\\rm{if}}\\,n \\in {\\scr S},} \\hfill\\cr{0,} \\hfill & {{\\rm{otherwise}},} \\hfill\\cr}} \\right.} & {n = 0,1, \\ldots ,q - 1.}\\cr} . (3) The sequence (un) is balanced and has uniform pattern distribution if T is approximately q2. These results are motivated by earlier results for the sets of quadratic residues and primitive roots modulo a prime. We unify these results and derive many further (asymptotically) balanced sequences with uniform pattern distribution from pseudorandom subsets.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"12 1","pages":"89 - 108"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balance and Pattern Distribution of Sequences Derived from Pseudorandom Subsets of ℤq\",\"authors\":\"Huaning Liu, Arne Winterhof\",\"doi\":\"10.2478/udt-2021-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let q be a positive integer and 𝒮={x0,x1,⋯,xT−1}⊆ℤq={0,1,…,q−1} {\\\\scr S} = \\\\{{x_0},{x_1}, \\\\cdots ,{x_{T - 1}}\\\\}\\\\subseteq {{\\\\rm{\\\\mathbb Z}}_q} = \\\\{0,1, \\\\ldots ,q - 1\\\\} with 0≤x0<x1<⋯<xT−1≤q−1. 0 \\\\le {x_0} < {x_1} <\\\\cdots< {x_{T - 1}} \\\\le q - 1. . We derive from S three (finite) sequences: (1) For an integer M ≥ 2let (sn)be the M-ary sequence defined by sn ≡ xn+1 − xn mod M, n =0, 1,...,T − 2. (2) For an integer m ≥ 2let (tn) be the binary sequence defined by sn≡xn+1−xn mod M,n=0,1,⋯,T−2. \\\\matrix{{{s_n} \\\\equiv {x_{n + 1}} - {x_n}\\\\,\\\\bmod \\\\,M,} & {n = 0,1, \\\\cdots ,T - 2.}\\\\cr} n =0, 1,...,T − 2. (3) Let (un) be the characteristic sequence of S, tn={1if 1≤xn+1−xn≤m−1,0,otherwise,n=0,1,…,T−2. \\\\matrix{{{t_n} = \\\\left\\\\{{\\\\matrix{1 \\\\hfill & {{\\\\rm{if}}\\\\,1 \\\\le {x_{n + 1}} - {x_n} \\\\le m - 1,} \\\\hfill\\\\cr{0,} \\\\hfill & {{\\\\rm{otherwise}},} \\\\hfill\\\\cr}} \\\\right.} & {n = 0,1, \\\\ldots ,T - 2.}\\\\cr} n =0, 1,...,q − 1. We study the balance and pattern distribution of the sequences (sn), (tn)and (un). For sets S with desirable pseudorandom properties, more precisely, sets with low correlation measures, we show the following: (1) The sequence (sn) is (asymptotically) balanced and has uniform pattern distribution if T is of smaller order of magnitude than q. (2) The sequence (tn) is balanced and has uniform pattern distribution if T is approximately un={1if n∈𝒮,0,otherwise,n=0,1,…,q−1. \\\\matrix{{{u_n} = \\\\left\\\\{{\\\\matrix{1 \\\\hfill & {{\\\\rm{if}}\\\\,n \\\\in {\\\\scr S},} \\\\hfill\\\\cr{0,} \\\\hfill & {{\\\\rm{otherwise}},} \\\\hfill\\\\cr}} \\\\right.} & {n = 0,1, \\\\ldots ,q - 1.}\\\\cr} . (3) The sequence (un) is balanced and has uniform pattern distribution if T is approximately q2. These results are motivated by earlier results for the sets of quadratic residues and primitive roots modulo a prime. We unify these results and derive many further (asymptotically) balanced sequences with uniform pattern distribution from pseudorandom subsets.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"12 1\",\"pages\":\"89 - 108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2021-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2021-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抽象让问一个正整数和𝒮= {x0, x1,⋯,xT−1}⊆ℤq ={0,1,…,q−1}{\可控硅年代}= \ {{x_0}、{x_1} \ cdots{间{T - 1}} \} \ subseteq {{\ rm {\ mathbb Z}} _q} = \ {0 1 \ ldots, q - 1 \}≤0 x0 < x1 <⋯< xT q−−1≤1。0 le {x_0} < {x_1} < \ \ cdots <{间{T - 1}} \ le q - 1。。由S导出三个(有限)序列:(1)对于整数M≥2,设(sn)是由sn≡xn+1−xn mod M定义的M-任意序列,n = 0,1,…, t−2。(2)对于整数m≥2,设(tn)是由sn≡xn+1−xn mod m定义的二进制序列,n=0,1,⋯,T−2。\矩阵{{{s_n} \枚{间{n + 1}}, {x_n} \ \ bmod \, M,}和{n = 0, 1, \ cdots, T - 2。}\cr} n = 0,1,…, t−2。(3)设(un)为S的特征序列,tn={1if 1≤xn+1−xn≤m−1,0,否则,n=0,1,…,T−2。左\矩阵{{{t_n} = \ \{{\矩阵{1 \ hfill & {{\ rm{如果}}\ 1 \ le{间{n + 1}} - {x_n} \ le m - 1} \ hfill \ cr {0} \ hfill & {{\ rm{否则}}}\ hfill \ cr}} \。} & {n = 0,1, \ldots,T - 2。}\cr} n = 0,1,…,q−1。我们研究了序列(sn)、(tn)和(un)的平衡和模式分布。对于具有理想的伪随机性质的集合S,更确切地说,具有低相关测度的集合,我们证明了:(1)当T小于q的数量级时,序列(sn)是(渐近)平衡的,并且具有均匀的模式分布。(2)当T近似为un={1n∈𝒮,0时,序列(tn)是平衡的,并且具有均匀的模式分布,否则,n=0,1,…,q−1。左\矩阵{{{u_n} = \ \{{\矩阵{1 \ hfill & {{\ rm{如果}}\ n \在{\可控硅年代}}\ hfill \ cr {0} \ hfill & {{\ rm{否则}}}\ hfill \ cr}} \。} & {n = 0,1, \ldots,q - 1。} \ cr}。(3)当T近似于q2时,序列(un)是平衡的,且具有均匀的模式分布。这些结果是由先前关于二次残数集和原始根模素的结果所推动的。我们统一了这些结果,并从伪随机子集导出了许多具有均匀模式分布的进一步(渐近)平衡序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balance and Pattern Distribution of Sequences Derived from Pseudorandom Subsets of ℤq
Abstract Let q be a positive integer and 𝒮={x0,x1,⋯,xT−1}⊆ℤq={0,1,…,q−1} {\scr S} = \{{x_0},{x_1}, \cdots ,{x_{T - 1}}\}\subseteq {{\rm{\mathbb Z}}_q} = \{0,1, \ldots ,q - 1\} with 0≤x0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信